

Sharing best practices for the low carbon future

Agenda

- 1. Bruce Hedman: Setting the scene
- 2. Katrina Pielli: Federal policies and actions to support CHP
- 3. Dwayne Breger: Mass Save Energy Efficiency incentives and the Alternative Portfolio Standard
- Michael Worden: NY's efforts to promote CHP for grid resiliency and reliability
- 5. Panel discussion/Q&A

Sharing best practices for the low carbon future

About the Institute for Industrial Productivity

IIP provides industry and governments with the best energy efficiency practices to reduce energy costs and prepare for a low carbon future.

- Sharing best practices, including policy experience, and providing access to a network of international experts.
- Developing original research, analysis and databases.
- Bridging the gap between government policy and industry implementation.

What Is Combined Heat and Power?

CHP is an *integrated energy system* that:

- Is located at or near a factory or building
- Generates electrical and/or mechanical power
- Recovers waste heat for
 - –heating,
 - -cooling or
 - -dehumidification
- Can utilize a variety of technologies and fuels

What Are the Benefits of CHP?

- User Reduced energy costs and improved power reliability
- Environment Reduced energy use and lower emissions (greenhouse gases, NOx, SOx, CO and PM)
- Public Safety Keep critical infrastructure operating and support the grid in times of emergency

Efficiency Benefits of CHP

Source: Oak Ridge National Laboratory

CHP Value Proposition

Category	10 MW CHP	10 MW PV	10 MW Wind
Annual Capacity Factor	85%	22%	34%
Annual Electricity	74,446 MWh	19,272 MWh	29,784 MWh
Annual Useful Heat	103,417 MWh _t	None	None
Footprint Required	6,000 sq ft	1,740,000 sq ft	76,000 sq ft
Capital Cost	\$20 million	\$45 million	\$24 million
Annual Energy Savings	316,218 MMBtu	198,563 MMBtu	306,871 MMBtu
Annual CO ₂ Saving	42,506 Tons	17,824 Tons	27,546 Tons

Source: CHP: A Clean Energy Solution; US DOE and EPA, 2012

Based on: 10 MW Gas Turbine CHP - 28% electric efficiency, 68% total efficiency Displaces National All Fossil Average Generation (eGRID 2010) - 9,720 Btu/kWh, 1,745 lbs CO₂/MWh, 6% T&D losses

CHP: An Important U.S. Energy Resource

Source: ICF CHP Installation Database (2012 data)

- 82.4 GW of installed CHP at 4,200 industrial and commercial facilities (2012)
- 87% of capacity in industrial applications
- 70% of capacity is natural gas fired
- Avoids more than 1.8 quadrillion
 Btus of fuel consumption annually
- Avoids 241 million metric tons of CO₂ compared to separate production

The Potential for Additional CHP

Source: CHP: A Clean Energy Solution; US DOE and EPA, 2012

Emerging CHP Market Drivers

- Changing natural gas outlook
- Growing recognition of CHP benefits by state and federal policymakers
- Opportunities created by:
 - Environmental pressures
 - Growing interest in grid resiliency

Over 4,000 MW announced/under construction

Hurdles to Expanded Use of CHP

- Financial uncertainty
- CHP cost and performance uncertainty
- Regulatory uncertainty
- Utility uncertainty

