

Budi Supomo – ID ABB, 2014

Micro-Grids and renewable energy integration

Global energy challenges Social, economic and environmental

Access to electricity and water

- At an economically viable cost
- For an increasing global population

Climate change and protection

- CO₂ reduction goals
- Sustainable power generation
- Energy efficiency

Increased need for significant infrastructure investments to overcome challenges related to

- Centralized solutions
- Decentralized solutions

Micro-Grids Decentralized, self-sufficient power networks

Microgrids are generally located in regions rich in renewable energy resources

Grid stabilization for high penetration systems Integration Strategies

Grids powered by fossil-fuel and renewable energy Diesel Micro-Grids

Diesel microgrids have the greatest energy cost savings potential

Off Grid Micro-Grid Typical System Configuration

Integration Solution Micro-Grid

Networked Power Control & Optimization System

Integration Solution Micro-Grid ABB Solution : RMC 600 System

- Retrofit to existing diesel plant
- Integrate generators and loads
- Uses simple non proprietary Interface
- Configuration by Power System Engineers using web pages

Integration Solution Micro-Grid

Grid Stabilizing using Flywheel or Battery

Renewable energy integration challenges Microgrid technology solutions - typical penetration levels

Wind/solar/diesel systems	Annual Average Contribution	Peak Penetration
No integration	7-10%	20%
Automated dispatch	10-15%	22%
Grid stabilizing	40-60%	100%
Automated demand response	60-80%	100%
Energy storage	100%	100%

Microgrid design Model verification – using real data

Input

An and resoft Excel - considery-wighpact Itlanin sha

Power System Model

Recorded data from real system

Diesel generator	
Gen1 Gen2 Gen3 Gen4 Gen5 Gen6 Gen7	
ିଂସ୍ ସିସ୍ସ୍ସ୍୍ର୍୍ ସ୍	
15 Mar L5 Per L5	
P-C larger INCA 1 P-C larger P-C larger	
9,	
ACCESSION AND A DESCRIPTION AN	
	h.
	1
the second	10 C

Simulation tool

Output of simulation (Voltage, frequency, etc.)

Output

10	623047	. 6	12 5 61	1 Typestaku	stand bet den.	_	
	A	8	-C	0	E	- F	
2		Zeit in ooo	An -	min	1931		
3	122.08 172	0 1202636800	5.6600	6	- 11		Tar.
4	12.2.08 17:3	0 1202537400	4,2101	0	19		
5	12,2,08 17.4	0 1202939000	113645	0	32		
₿.	12.2.08 17.5	8 1202999600	9.557	0	18		
7	122.08 18:0	011202839200	14.6393	0	34		
5	12,2.08 18-1	D 12025398800	10.1709		36		
5	122.08 18:2	0.1202840400	24.1999	0	-40		
1)	122.08 18.3	0 1202941000	18.0296	0	-46		
1Ľ	12.2.08 18:4	0. 1202841600	26,4321	0	48		
17	12.2.08 18.5	DI 1202842200	29.0115	a	50		
3	12.2.08 19.0	0 1202842800	52 353	0	75		
14	12.2.08 19.1	0 1202943400	76.6607	37	105		D
15	122.08 19:2	0 1202944000	92,7392	69	123		
	The Section	to Therein	Tranki 7	127			1418

Integrating renewable energy into Micro-Grids Secure power generation and fuel cost savings

Average Oil Increase in USD\$/Barrel is \$12.50/year

- Diesel fuel cost is volatile and rising over time
- Renewable energy cost is far less volatile and reducing over time
 - Energy source is free

- Renewable energy is economically competitive today
 - Leveled Cost of Electricity (LCOE) lower than diesel fuel generation

Renewable energy integration challenges Managing power output fluctuations

- Inherent volatility of renewable energy can compromise grid stability
- The renewable energy integration solution must address requirements traditionally fulfilled by diesel generation (base load)
 - Frequency and voltage control
 - Sufficient spinning reserve
 - Sufficient active and reactive power supply
 - Peak shaving and load levelling
 - Load sharing between generators
 - Fault current provision
- Renewable energy generation capacity should be sized to maximize ROI and fuel savings

Renewable energy integration High penetration leads to short payback and higher ROI

Fossil Fuel Power Station

High renewable energy contribution

Solarfarm

Windfarm **Renewable integration Fossil Fuel Power Station**

Load

Grid Stabilization

Renewable energy integration challenges Summary

- Renewable energy volatility compromises grid stability
- Integration without intelligent plant control system limits economic benefits
 - Poor integration can damage fossil fuel generators
 - Lack of automatic adjustment of spinning reserve results in higher fuel consumption
 - Renewable generation may have to be curtailed to guarantee grid stability
- Use of intelligent control and grid stabilization enables high penetration systems resulting in shortest payback and highest ROI
 - Up to 100% renewable energy peak penetration and 60% annual energy contribution is typical

ABB solution

ABB RE + and renewable energy generation Comprehensive solution from a single source

RE + enables high penetration, up to 100%, into diesel microgrids

- Expertise in engineering and consulting
 - 25+ years of microgrid experience and system design optimization
- Intelligent control and management of all interconnections
 - Remote Microgrid Controller (RMC 600)
- Grid stabilization
 - ✓ PowerStore[™]

Additional expertise and capabilities

- Renewable energy generation
 - Solar PV plant/farms turnkey solutions
 - Wind farm integration

Technologies for Micro-Grids and Distributed Generation Key Technological Components

1.Grid Stabilizing Systems

 Keep the voltage (and frequency) stable even with a high penetration of intermittent renewable energy sources and with sudden load variations

2. Energy Storage Systems

 To locally increase the match of generation and load, i.e.to consume power predominantly near to where it is generated

3.Distributed Power Flow Control Systems

 To maximize use of renewable while maintaining the grid stable and providing high quality power and maximizing asset life

4.On/Off-grid Transition Systems

ABB RE+: Renewable microgrid controller, RMC 600 Efficient and reliable power management

- Maximize renewable energy penetration and fuel savings
- Optimum loading and spinning reserve in fossil fuel generators
- Distributed control logic enhances reliability and scalability for future expansions

ABB RE+: PowerStore[™] flywheel system Grid stabilization

- Stabilizes frequency and voltage fluctuations
 - Heavy-duty application: dynamic power injection and absorption in miliseconds
- Maximizes fuel savings through highest possible renewable penetration
- Proven track record
 - 3,000 kW installed and 2,100 kW under commissioning

ABB turnkey solar PV solutions

ABB wind integration solutions

Month DD, Year | Slide 22 EBoP: Electrical balance of plant

ABB RE+ and battery energy storage An alternative solution when applicable

Applications: peak demand shaving or load shifting

- Longer stored energy discharge timescale; minutes to hours
- Enable fossil fuel generators to run at stable outputs
- Maximize renewable energy load factor

ABB's comprehensive battery energy storage solutions

- Based on proven power converter technology
- Turnkey and modular solutions suitable for all power levels (~25kW to 70 MW)
- Solutions designed and developed independently of battery technology

ABB RE + and renewable energy generation Summary

- ABB RE+ solution enables
 - Secure power generation and fuel cost savings
 - Maximum benefits of high ROI and shortest payback time through high renewable energy penetration and grid stabilization
 - Reliable, uninterrupted and high quality power supply to all loads
- ABB renewable energy generation capabilities encompass
 - Turnkey solar PV farms
 - Wind farm integration

References

High penetration reference system Marble Bar, solar/diesel system, Australia

Australian Government Department of Clause Change and Energy Efficiency

182,000 liters of fuel saved annually 1,100 tonnes CO2 avoided annually 60% of energy supplied from PV plant

Customer

- Horizon Power
- Office of Energy, Government of Western Australia

Key objectives

- Minimize diesel consumption
- Reliable and stable power supply

ABB solution

 Implement a solar microgrid with PowerStore gridstabilizing technology and microgrid automation

The resulting system has

- Diesel (4 x 320kW)
- PV (1 x 300kW)
- PowerStore grid stabilizing system (1 x 500kW)

					Culiett internal	
L.					FILE NAME: For internal use	
κ.	MB Leyout	W6	96.15.15	В.		
er.	DESCRIPTION	DFIN	DATE	00	DREATING NO: 001	

знеетно. 1/1

High penetration reference system Ross Island, wind/diesel system, Antarctica

463,000 liters of diesel fuel saved annually 2,800 tonnes CO2 avoided annually Up to 70% wind energy penetration

Customer

 New Zealand's Scott Air Base (50 Hz system) America's McMurdo Station (60 Hz system)

Key objectives

- Reduce diesel cost
- Reduce environmental risk of transporting diesel
- Reduce CO2 emissions
- Ensure a reliable, high quality supply

ABB solution

 Implement a wind diesel microgrid with PowerStore grid-stabilization and microgrid automation

The resulting system has:

- 9 x diesel generators
- Wind turbines (3 x 330kW)
- PowerStore grid stabilizing (1 x 500kW)
- Frequency converter to integrate both bases
- Renewable Microgrid control system

Business cases

High Penetration Business cases Marble Bar – Solar/Diesel

	Low Penetration	High Penetration
Solar PV Array	200kW	500kW
RE+	-	500kW PowerStore + RMC
Capex for PV	\$5/W	\$3.8/W
PV Capex	1 mio \$	1.9 mio \$
System Capex	1 mio \$	2.85 mio \$
Renewable Energy Generated	370 MWh p.a.	925 MWh p.a.
Excess Energy	37 MWh p.a.	147 MWh p.a.
Annual Renewable Energy Contribution	14%	32%
Fuel Savings	75,000 liter p.a.	182,000 liter p.a.

High Penetration Business cases Faial Island – Wind/Diesel

	Medium Penetration	High Penetration
Wind Farm	5 x850 kW	7 x 850kW
RE+	RMC	RMC+ 2 x 1MW PowerStore
Capex for Wind Farm	\$6,692,110	\$9,368,954
System Capex	\$6,992,110	\$12,068,954
Renewable Energy Generated	15.11 GWh p.a.	21.15 GWh p.a.
Excess Energy	657 MWh p.a.	1,895 MWh p.a.
Annual Renewable Energy Contribution	24%	32%
Fuel Savings	3,534,000 liter p.a.	4,750,000 liter p.a.

Summary Micro-Grid challenges

- Allow for sufficient planning time & budget to ensure the integration of renewables
 - Gives you the highest ROI
 - Does not negatively affect your power system
- Being able to control all plant in a system including all renewable generators to
 - Control generation to meet demand
 - Control excess energy and prevent over production and reverse power scenarios
 - Optimize the total system efficiency by maximizing the renewables
- Maintaining grid stability when running high penetration renewable systems by
 - Compensating the frequency and voltage fluctuations

Power and productivity for a better world[™]

Grid Stabilization for High Penetration Systems Storage vs. Stabilization

- Storage
 - Long term application
 - High energy content
 - Typical low duty cycle
- Stabilization
 - Fast charge/discharge
 - Low energy content
 - High duty cycle

ABB RE+ Grid Stabilizing PowerStore_{*} Flywheel System

- The flywheel is a robust, mechanical device using simple technology such as a synchronous motor/generator
- It is failsafe, utilizing it's own energy to supply the lifting magnets

Flywheel Performance Data				
18 MWs				
1650 kW				
3600 rpm				
6000 kg				
2900 kg				
10 kW				
5 years				
8 years				

ABB RE+ Solution Grid Stabilizing PowerStore Flywheel System

Features

- Scalable & Modular
- High duty cycle
- Grid Stabilising
- Frequency Control
- Voltage Control
- Grid forming in 100% RE scenario
- Unbalance load supply
- Spinning reserve
- Active & reactive power supply
- Fault ride through

Power electronic conversion ABB energy storage converter portfolio

ESS applications fall into 2 categories Segmentation between long and short discharge time

ESS = Energy Storage System

Right technology for right application Segmentation on 'power' and 'energy' technologies

How ABB selects the right battery manufacturer Evaluate both technical and commercial maturity

Specific to batteries

- Right performance
- Right total cost
- Support with in-house testing
- ... as 'due diligence'
- ... to stay at the cutting edge of battery technology

All ABB suppliers

- Supplier Code of Conduct
- Process Audit
- Supplier Qualification
- Supplier Risk Management

An ABB battery module testing facility

