How to strengthen Renewable Heating and Cooling

Gerhard Stryi-Hipp

President

European Technology Platform on Renewable Heating & Cooling

Head of Energy Policy
Coordinator Smart Energy Cities
Fraunhofer Institute for
Solar Energy Systems ISE

REN21 Webinar Heating & Cooling 21 October 2015

Structure of the RHC-Platform

Facts and figures

- Founded in 2008
- One of 35 officially endorsed technology platforms
- 5 panels, led by steering committees
- Supported by the European Commission
- More than 600 members

www.rhc-platform.org

First steps of the RHC-Platform: Development of Vision, Strategy and Roadmaps

Download: www.rhc-platform.org

Biomass, Geothermal and Cross-cutting

→ Common Implementation Roadmap

Common Vision 2020 - 2050

2011

Strategic Research Priorities of Solar thermal, Biomass, Geothermal and Cross-cutting

→ Strategic Research & Innovation Agenda

2012

2013 2014

Solar Water Heating in Europe

MARKET 2013 (EU-27 + Switzerland)

Newly Installed: 3.1 Mio m² / 2.1 GW_{th}

In operation: 43 Mio m² / 30 GW_{th}

CHARACTERISTICS

- Solar radiation: for free and everywhere
- Daily and seasonal solar variation
 Storage and auxiliary heating source needed

CHALLENGES

- Enlarge the type of applications

 Large systems, district heating, process heat,
 higher temperature, solar assisted cooling
- Increase the solar fraction per building From hot water to Solar-Active-Houses
- Ease operation and reduction of costs

APPLICATIONS

Domestic hot water & space heating

- One/two/multi family homes
- Hotels, hospitals, residential homes,...
- District heating
- Multifunctional façades
- PV-Thermal (PV-T) hybrid collectors

Process heat

- Low up to 100°C
- Medium up to 250°C
- Solar assisted cooling and refrigeration

Biomass

MARKET solid biomass 2013 (EU-27)

 Heat consumption from solid biomass: 71.7 Mtoe / 834 TWh

Biomass consumed: 92 Mtoe / 1064 TWh

CHARACTERISTICS

- Stored renewable energy Ideal as auxiliary heat for variable RES
- Limited / sustainable production needed Used for electricity and transport as well Imports & trade possible in & out Europe

CHALLENGES

- Developing sustainable biomass supply chains for different sources
- Definition of sustainability criteria for biomass Strong influence on the biomass potential
- Increase efficiency of burning biomass
- Increase efficiency by using combined heat, power and cooling biomass plants Most efficient way to use biomass

APPLICATIONS

Small burners

- Pellets stove
- Wood chip boiler
- Log wood stove/boile

Heat only or combined heat and power

- Pellets boiler

process heat

- Wood chips boiler
- Waste & agricultural feedstock boiler

- Solid biomass
- Bio fuels / bio gas

Geothermal

MARKET 2012 (EU-27)

- Aerothermal heat pumps sold: 1.6 Mio
- Geothermal heat pumps sold: 0.1 Mio

CHARACTERISTICS

- Continuous heat source Ideal for base demand, peak demand suitable
- Resources principally everywhere Quality of deep GT resources depending on local geology and depth

CHALLENGES

- Improvements of exploration and underground reconnaissance Investment risk of successful drilling
- Increase of efficiency / cost reduction
- Deployment of EGS

TECHNOLOGIES and APPLICATIONS

Shallow GT

- Geothermal HP
- Underground thermal storage

Applications

- DHW, space heating & cooling
- process heat

Deep GT (>400m)

- Direct heat use
- Comb heat & power

Applications

- District heating
- Agriculture and industrial processes
- Balneology
- Cooling

HP = Heat pump, GSHP = Ground source heat pump, EGS = Enhanced geothermal systems, DHW = Domestic hot water

Cross Cutting Technologies

TECHNOLOGIES

- District heating and cooling (DHC)
- Thermal energy storage
- Hybrid systems and heat pumps

CHARACTERISTICS

- Enabling technologies for high uptake of renewable energy
- Optimization / integration to framework conditions necessary

CHALLENGES

- Develop smart solutions and ICT for complex systems
- Increase efficiency and COP
- Reduce costs

APPLICATIONS DHC

- District heating
- District cooling
- DH&C with seasonal storage

TE Storage

- Water storage
- PCM
- Thermo chemical
- Underground storage (UTES)

Hybrid systems heat pumps

- Innovative system design
- Ground, water and air heat pumps

COP = Coefficient of performance, PCM = Phase change material, GT = Geothermal, UTES = Underground Thermal Energy Storage

The RHC potential is identified – Competitiveness of the single technologies is unclear

- 1. Competition: fossil fuels against renewable energy sources (RES)

 Due to scarcity (peak oil), growing import dependency and/or climate change
- dependency and/or climate change regulation fossil fuels will be replaced by renewable energy sources
- → Renewable energy sources will replace fossil fuels on the long run!
- 2. Competition: within the RES sector Solar thermal vs. Biomass vs. Geo thermal vs. heat by RES electricity and heat pumps
- → The single technologies/solutions must improve their competitiveness!

Renewable energy sources could deliver 100% of the European heating and cooling demand by 2040

Source: EHC-platform, Common vision for the RHC-sector, 2011 RDP-Scenario = Full Research, development and policy scenario

Main objective of R&D on RHC: Cost reduction

Example: solar heat costs – diverse picture

Status solar thermal heat prices for different applications in different European regions in comparison to heat from electricity and natural gas

Example solar thermal: Cost reduction on component level happened, but not on system level (energy costs)

Production costs development for European standard collectors (2.0 – 2.5 m²)

Source: ESTTP, Daten: Solrico, Trenkner (historical data) / ESTIF (market perspective based on NREAPs)

Characteristic H&C markets and technologies

- **High heterogeneity, high complexity:** on owner, operator, technologies, equipment and system sizes, type and size of applications (room, district and process heating,...)
- Strong dependency on international fossil fuel prices (with uncertain forecasts)
- Growing interdependency of the heating & cooling with the elctrictical sector (heat pumps, combined heat and power, other power to heat technologies)
 - → System solutions are necessary for the electric-heating-cooling system
- Future heating & cooling demand is difficult to forecast, because it is strongly dependent on efficiency and comfort requirements (building insulation, efficient technology and distribution,...)
- Renewable energy sources (RES) are able to deliver 100% of the H&C demand, but
 - demand must be is limited = high efficient system,
 - energy system must be optimized (right mix of local resources) and
 - the entire electrical-heating-cooling system must be optimized
- Development of technologies and markets in heating & cooling is necessary
 - there is huge market potential and huge potential on technological innovations

100% RES: Electric-Heating-System must be optimized as a whole

Experiences from the project SoPro India

Analysis of the Indian solar thermal market

- Indian solar water heating systems (SWHS) market is rather small, but has high potential
- Barriers are
 - Lack of awareness
 - Concerns on the reliability
 - No reliable data on performance and cost savings of SWHS
 - Available roof space is limited
 - Financing

Project work

- Data gathering on 10 case studies
- Scientific Monitoring of 2 SWHS
- Information on website

H&C technologies differs globally

Example: Differences in Solar Water Heater Systems in Europe and India

	Central / North Europe	India
Pressurized*	Only pressurized systems	Almost only non-pressurized systems
Heat transfer fluid	Almost only glycol mixture (anti-freezing)	Almost only water without freezing protection (Often demineralized / reversed osmosis water used DM/RO)
Separation of heat circuits	Solar circuit is separated from other circuits by heat exchangers	Often one circuit only, water used in the process flows through collectors
Control	Only automatically controlled	Often manually operated
»Philosophy«	 »Heat generation oriented« → system is defined by collector area (solar yield increases with size) 	 »Hot water supply oriented« → The system is designed to deliver a specific amount of water with a specific temperature a day (storage is sized with this volume SWHS sized with LPD = Litre per day)

^{*}A solar water heating system is called "pressurized", if the collector or other hydraulic circuits are closed and an additional pressure of for typically 1 to 3 bars (100 to 300 kPa or 1.02 to 3.06 kg/Sq. cm) is added to the static pressure. If the system pressure is only created by statics e.g. by a make-up water tank, it is defined as "non-pressurized".

Conclusions

- The renewable heating & cooling (RHC) sector is growing globally, however much more slowly than the electricity sector
- Main barriers are:
 - Competitiveness (low or subsidized price for fossil fuels)
 - Complexity of systems / Concerns on reliability
 - Integration of electric-heating-(cooling) system must be developed
- The development of RHC markets needs
 - (local) market oriented solutions
 (know-how transfer means adaptation of technologies, not only transfer)
 - increased political support for market deployment (subsidy programs, reduction of fossil fuel subsidies)
 - More R&D, innovation and technological development (to reduce costs, increase efficiency and reliability, enter new markets,...)

