

Opportunities & Challenges for Renewable Energy Development in Indonesia

Retno Setianingsih Energy Specialist Program, USAID/Indonesia

October 1st, 2014

Major challenges facing Indonesia's energy sector

GHG emissions to achieve 26% (41% with donor support) reduction by 2020.

Energy subsidies account for 3.8% of GDP or 28.4 billion in 2013.

Increased
Energy
Security

Mitigate
GHG
Emissions

Reduced
Energy
Subsidy

Increased
Energy
Access

New and renewable energy supply to grow from 5% to 23% by 2025.

Electrification ratio to grow from 80% to 90%, current demand growth = 8% per year.

Renewable energy and energy efficiency can address all these issues. However, the potential contribution faces a number of key challenges.

Overview of Current Programs

USAID/Indonesia – Clean Energy Portfolio 2011-2014		
Programs	Period of Implementation	Implementing Partner
Indonesia Clean Energy Development (ICED)	2011-2014*)	Tetra Tech ES.
Capacity for Indonesian Reduction of Carbon in Land Use and Energy (CIRCLE)	2011-2014	Winrock Intl.
Utility Exchange Partnership Program – PLN & Hawaii Electric Company (HECO)	2013-2014	U.S. Energy Association
University Partnership - Geothermal Education Capacity Building Program	2011-2015	University of Southern California & Institut Teknologi Bandung (with support from Star Energy)

^{*)} recently extended to February 2015

Flagship Project - ICED

ICED Approach in Developing Clean Energy Sector

Policy & Coordination

Enabling a conducive policy environment to develop CE projects

Capacity
Building &
Outreach

Developed capacity to all stakeholders & increased CE awareness

Clean Energy Sectors / Market

Project Development

Provide TA to all stakeholders in developing CE projects

Government / Policy Makers

PLN (Utilities Company)

Private Sectors (industry, banks)

ICED Target Resultss

- 4 million tons CO2e avoided
- 120 MW installed capacity
- At least \$120 million public and private funding leveraged
- At least 20 small and medium sized projects implemented
- 1.2 million persons with increased access to clean energy
- \$250 million in reduced subsidy due to tariff increase and replacement of diesel fuel

Flagship Project - ICED

Project in Pipeline (under development)

 107 projects (hydro, biomass, biogas, wind, energy efficiency)

Potential Impacts:

- 799.3 MW of generating capacity
- 3.2 million tons of CO2e reduced annually
- 97.4 million tons of CO2e reduced over projects' lifetime
- 9.3 million persons with increased access to clean energy
- \$289 million in reduced subsidy for electricity per year
- \$1.7 billion in leveraged private sector financing

Actual results to date

Project Location

ICED's Key Findings

1) Domestic small scale clean energy market is growing fast

- Significant growth of projects under development in the last 3 years; *ICED's project pipeline grew from 19 to 100+ between 2012 and 2014.*
- Introduction of new technologies: biogas, solar pv, wind, municipal solid waste.
- Increased interest and capital availability from domestic banking and non-banking financial institutions; the domestic green financing portfolio grew from Rp 6.4 Trillion (2011) to over Rp 15 Trillion (2013) – Bank Indonesia's survey 2013
- Improved capacity of key players: project developer, PLN (regional), banking officers (loan, risk)

ICED's Key Findings

2) New initiatives impacting clean energy development both directly and indirectly

- GHG emission reduction target/action plan (RAN/RAD GRK) drives improvement in regional energy planning and crosssectoral coordination.
- Bank Indonesia/OJK Ministry of Environment's Green Banking/Sustainable Finance joint program.
- Ministry of Agriculture's Indonesia Sustainable Palm Oil (ISPO): POME for energy generation
- Local government initiatives to address energy challenges:
 - North Sumatera Government preparing for RUED planning
 - Makassar Municipal Government's EE pilot project in government buildings
 - Riau district governments' focus in developing locally available bioenergy resources from palm oil mills

Challenges in Accelerating Clean Energy Growth

1) Alignment and streamlining of GOI's policies, regulations and incentives

- a. Necessary incentives to support private investment:
 - Government targets are set but lack of clear understanding of the policies and programs needed to achieve results.
 - Subsidized energy prices distort the market for renewable energy and energy efficiency.
 - Government incentives (e.g., feed in tariffs, tax incentives) are insufficient to stimulate rapid private sector investment.
 - Critical issues: licensing/permits, complementary scheme for FiT, implementable fiscal/tax incentives, bankable Power Purchase Agreement.
- b. Capacity of local government to implement and align national programs with local development authorities:
 - National clean energy programs lack the guidelines and capacity for local authorities to implement
 - Local autonomy not aligned with or supportive of National policies

Challenges in Accelerating Clean Energy Growth

2) Domestic clean energy industry lacks the experience and capacity to develop feasible/financeable projects

- Banks/financial institutions do not fully understand risks and therefore rely on corporate credit and excessive collateral.
- Lack of capacity and standard procedures in regional PLN offices in assessing and processing proposals from project developers.
- Poor quality of services from local supporting engineering and consulting companies
- Infrastructure challenges to support distributed generation and rapid renewable energy integration to grid
- No successful business models for energy services/energy efficiency contracting.

Guidelines to interconnect renewable energy distributed generation

Risks Associated with Developing and Operating Renewable Energy Generation Plants:

- Location of distributed REGPs (e.g., hydro, biogas) is far from existing distribution lines requires high interconnection costs
- Distribution line capacity limits availability for REGP output or requires redundant lines to connect to substation
- Impact of multiple REGPs connected to same circuit not assessed
- Power Purchase Agreement (PPA) signed without determining true cost of interconnection or limitations in sales to PLN
- PLN Regional Offices (ROs) do not use common approach when negotiating interconnection in PPA
- Availability of REGPs limited by voltage fluctuations on long 20 kV feeder lines

Objectives & Purpose of the Guidelines

- To ensure connection and parallel operation of REGPs do not adversely affect the safety, reliability and power quality of PLN's power system.
- To facilitate implementation of the Government regulations on development of renewable energy generation.
- Provide streamlined procedures for:
 - REGP developers to prepare REGP connection applications, and carry out necessary connection studies;
 - PLN to review, and approve connection applications and studies, and seek ESDM's initial approval for proceeding with the process for direct procurement of REGP power.
- Provide REGP developers with clear guidance in performing connection studies and technical requirements for consideration early in the REGP project planning and development stages.
- Provide useful reference connection technical information to REGP engineering firms, equipment manufacturers, suppliers and accredited testing and certification agencies.
- Standardize the approach and methodology used by PLN ROs.

Applicability

- Applicable to all new REGPs no larger than 10 MW in capacity to be connected to PLN's distribution system at 20 kV or lower voltage level.
- Also applicable to major refurbishment/modification of existing REGPs already connected to PLN's distribution system.

For more information, contact:

Retno Setianingsih Energy Program Specialist USAID/Indonesia

rsetianingsih@usaid.gov

www.usaid.gov