











# Overview of Performance Monitoring and NREL's Quality Assurance Framework

Sam Booth

**CESC Webinar** 

February, 2019

#### Power Africa Beyond the Grid Program Support Summary

 Summary: NREL is supporting Power Africa's Beyond the Grid Program with developing 8-10 million new electrical connections from mini and micro grids focused on implementing the QAF





#### Specific Support Areas

- Technical assistance to developers
- Publication of reports to support micro-grid stakeholders
- Support to government entities to develop the enabling environment



## **Quality Assurance Framework**

- Purpose: Provide structure and transparency for mini/micro-grid sector, based on successful utility models, while reflecting the broad range of service levels required to meet the needs of various segments of the off-grid consumer base
- Importance: Help lay the foundation for successful business models in the mini/micro-grid space



#### **The Utility Model**

Business models for commercially viable utilities must address the needs of the three key stakeholder groups:

- Customer: Need a guarantee of useable service that they can afford and are willing to pay for
- **Power Suppliers:** Need to guarantee a rate of return to their investors while covering operational costs
- Investors: Need to understand and be confident of the risks they are taking



## The Mini-grid "Utility" Model

Utility model breaks down in the case of rural electrification as a result of three main challenges:

- High cost of power provision to remote customers
- Lack of consistent cash flows from customers
- Poorly understood investment risk profile



#### Elements of a Quality Assurance Framework for Minigrids

#### 1. Define levels of service

 Tailored to different tiers of consumer need and ability to pay, including reasonable thresholds for:

- Power quality
- Power availability
- Power reliability

#### 2. Define accountability framework

- Provides defined assessment, monitoring and reporting protocol for operators to improve transparency and sustainability
- Clear process for verification service delivery through trusted information to consumers, funders, and/or regulators







Quality Assurance Framey



Implementation Guide for Isolated Community Power

# **Performance Monitoring Process**



# **Example: Power and Energy**

- 1. Power: Maximum draw in Amps or Watts
- 2. **Energy:** Total energy available (kWh) over a defined time period (month, year)

| LEVEL OF<br>SERVICE | QAF LABEL | DEFINITION           |  |
|---------------------|-----------|----------------------|--|
| 1                   | Level 1   | peak power > 3 W     |  |
| 2                   | Level 2   | peak power > 50 W    |  |
| 3                   | Level 3   | peak power > 200 W   |  |
| 4                   | Level 4   | peak power > 800 W   |  |
| 5                   | Level 5   | peak power > 2,000 W |  |
| 6                   | Level 6   | peak power > 5,000 W |  |

| LEVEL OF<br>SERVICE | QAF LABEL | DEFINITION        |  |
|---------------------|-----------|-------------------|--|
| 1                   | Level 1   | > 4.38 kWh/year   |  |
| 2                   | Level 2   | > 73 kWh/year     |  |
| 3                   | Level 3   | > 365 kWh/year    |  |
| 4                   | Level 4   | > 1,250 kWh/year  |  |
| 5                   | Level 5   | > 3,000 kWh/year  |  |
| 6                   | Level 6   | > 73,000 kWh/year |  |

## **Example Analysis: Power and Energy**



Level of power availability is generally higher levels of consumption

### Example: Voltage Service Level and Importance of Definitions

# QAF Voltage Service Level Definitions (worst performing day)

| LEVEL OF<br>SERVICE | QAF<br>LABEL | DEFINITION             |  |
|---------------------|--------------|------------------------|--|
| 1                   | High         | <1 disturbance / day   |  |
| 2                   | Standard     | <5 disturbances / day  |  |
| 3                   | Base         | <10 disturbances / day |  |
| 4                   | -            | ≥10 disturbances / day |  |



# Modified Voltage Service Level Definition (daily performance)

| LEVEL OF SERVICE | DEFINITION               |  |
|------------------|--------------------------|--|
| 1                | No voltage violations    |  |
| 2                | 1 – 4 violations per day |  |
| 3                | 5 – 9 violations per day |  |
| 4                | 10+ violations per day   |  |



# System Level Performance Monitoring





#### **Example insights and actions**

- 1. Consistently high voltage, review/adjust generator setpoints
- 2. Frequency spikes investigate loads during these periods
- 3. Explore opportunities to shift load to middle of the day

## Load Level Monitoring for Productive Uses of Energy

#### **Load Profiles**



#### **Business Case for Egg Incubator**

| VARIABLES                                       | VALUES | UNITS     |
|-------------------------------------------------|--------|-----------|
| Size of incubator                               | 100    | eggs      |
| Power rating of incubator                       | 100    | Watts (W) |
| Capital Cost                                    | 122    | \$        |
| Amount of power consumed per day                | 2.4    | kWh/day   |
| Operational hours                               | 24     | hours/day |
| Operational days per month                      | 21     | days      |
| Tariff                                          | 0.90   | \$/kWh    |
| Cost of power                                   | 45     | \$/month  |
| Avg. Expenses per month (including electricity) | 83     | \$/month  |
| Avg. Revenue of sales per month                 | 125    | \$/month  |
| Net profit                                      | 42     | \$/month  |
| Profit Margin                                   | 34%    |           |
| Simple payback                                  | 3      | months    |

Better understand opportunities for load growth, business cases, and impacts

#### **Resource List**

- Tarif Considerations
  - https://www.nrel.gov/docs/fy18osti/69044.pdf
- Productive Use
  - https://www.nrel.gov/docs/fy18osti/71663.pdf
- Financial and Operational Bundling
  - https://www.nrel.gov/docs/fy19osti/72088.pdf
- Customer Agreements
  - https://www.nrel.gov/docs/fy18osti/70777.pdf
- Quality Assurance Framework (multiple documents)
  - https://www.cleanenergysolutions.org/qaf
- Coming soon:
  - Performance monitoring
  - Battery selection
  - Surveys for demand prediction







#### Thank You!

samuel.booth@nrel.gov

303-275-4625

www.cleanenergysolutions/org/qaf

www.nrel.gov

