Renewable Energy Opportunities for Remote Indonesian Grids: Electrical Energy Storage

Gregory Long
Vice President, P.T Fluidic Indonesia
October 1st, 2014

Technology-Enabled Energy Storage Solutions

- Formed in 2006, headquartered in Scottsdale Arizona, more than 90 patents, over \$100M invested to date
- Intentionally "flying under the radar", Fluidic began production and deployment of its energy storage systems commercially in 2011
- Backed by some of the worlds premier clean-tech investors
- Proprietary rechargeable Zinc-Air technology with integrated smart battery controls
 - international Pinance Corporation

- Load-shifting benefits in over 500,000 real world cycles at commercial customer locations
- Operations in United States, SE Asia, Latin America and expanding
- Only company to receive funding twice in the same technology field from the US DOE Advanced Research Program - Energy (ARPA-E)

P.T Fluidic Indonesia

- P.T Fluidic Indonesia and Southeast Asia manufacturing hub established in Bogor in 2011
- Created more than 500 local jobs
- Only clean technology energy storage manufacturing in Indonesia
- Deployed more than 30,000 batteries in Indonesia alone, across Sumatra, Java, and Kalimantan
- Battle tested and proven technology and team

Typical Energy Storage Challenges in Indonesia and Southeast Asia

- Logistics weight
- Short or indeterminate lifetime
- Unable to quantify available energy
- Local Engineering Support

- Theft
- Spare/replacement
- · Lack of visibility on performance
- Inadequate warranty

Effects of Typical Energy Storage Challenges

- Failure of battery after short number of years
- Community cannot afford to replace batteries

- Unforeseen costs
- Dubious effectiveness of investment
- No measured results over 20 years

Slow & Limited Expansion of Micro Grids for Rural Communities

Fluidic Solutions Solving the Energy Storage Challenge

EXTENDED RUNTIME

8-72 hour discharges enable system to be used for demand response, peak shaving and critical backup power

VERTICALLY INTEGRATED

Energy storage, electronics and software on a single platform

CLEAN, INDOOR OR OUTDOOR

No lead/toxic material, no diesel exhaust, broad operating temperatures

PROVEN TECHNOLOGY

35K batteries globally since 2011, setting new reliability levels

SCALABLE ARCHITECTURE

Modular architecture from kWh to MWh, scale energy and power to meet actual demand anytime during the lifetime

LONG LIFE

high temp, depth of discharge, state of charge or number of cycles

24/7 REMOTE MONITORING

Lower
maintenance,
increased
reliability via
cloud connectivity

ELIMINATES THEFT

No theft value of the systems eliminates theft risk

Financial Challenges to Mass Deployment of Energy Storage

- Lowest Capital Cost in \$/KWh
 - On par with lead-acid and significantly lower cost than Li-Ion.
- Lowest Cost of Energy Throughput
 - \$/Kwh delivered over lifetime
- Lowest Cost of Levelized Energy (LCOE)
 - Total all-in project costs
- Predictable Operational Cost
 - All agreements and systems designed for 10 or 20 years of life with all expenses included

Thank You

www.fluidicenergy.com

