

Linking heat and electricity systems

5 June 2014

www.iea.org

© OECD/IEA 2014

Co-generation and efficient DHC can be part of a sustainable solution

Energy flow in the global power and heat sector. Source: IEA Statistics, 2013

...but existing barriers prevent extensive deployment

Co-generation share of power production in 2011

✓ Global electricity generation stagnant at 10% since 2000

Linking heat and electricity systems: Methodology

- ✓ Develop a compendium of case studies: industrial CHP and integrated approaches of CHP with DHC
- ✓ Distil lessons learned to assess impact on project development and operation

✓ Policy measures and market mechanisms to overcome existing barriers to further deployment

Compendium of CHP/DHC case studies

Project name	Type of application	Location	Capacity (MW)	Energy input	CO ₂ savings compared to conventional generation technologies (kt/year)
Markinch project	Industrial CHP - Paper sector	UK	127	Biomass	250
Eresma project	Industrial CHP - Beverage sector	Spain	23	Gas	16
Nuevo Pemex project	Industrial CHP - Gas processing and Refining sector	Mexico	730	Gas	430
Marstal project	Biomass CHP and solar thermal DH with storage and heat pump	Denmark	6	100% renewable	11
Bercy project	DC network – assisted with natural cooling	France	44	Natural cooling assisted	7
PNUW project	DH network – solar thermal with storage	Saudi Arabia	25	Solar, diesel (aux. boilers)	5

Key factors impacting CHP/DHC projects' development & operation

Technology selection:

- ✓ Energy efficiency
- ✓ Technology flexibility
- ✓ Energy prices and availability
- ✓ Thermal/electricity loads
- ✓ Existing local infrastructure
- ✓ Grid interconnection possibilities

Financing mechanisms:

- ✓ Company self-financed
- ✓ Loans
- ✓ Third party
- ✓ Joint venture
- ✓ Publicly financed
- ✓ Any combination of these

Business structure:

- ✓ Generator / end-user
- ✓ Generator/ market operator
- ✓ End-user/distribution

PROJECT DEVELOMENT

SYSTEM OPERATION

What matters at the technology selection phase?

- ✓ End-use efficiency goes first: get the right generation capacity size
- ✓ Temperature is important: compatibility of local heat sources and sinks, and minimise return temperature on DH systems
- ✓ Heat / electricity ratio: assess heat / electricity demand patterns over time
- ✓ Existing possibilities to locally bridge energy demand with generation
- √ Value flexibility

How to make energy efficiency and flexibility economically visible?

- ✓ CHP technologies typically require higher upfront investments
- ✓ DHC networks infrastructure are high capital intensive
- ✓ A detailed economic feasibility assessment is key...
 - ✓ Environmental and flexibility benefits in economics terms
 - ✓ Maximum integration of heat/electricity users and producers to be analyzed
 - ✓ Long-term view of energy market conditions

Business structure to cope with a deep level of integration

Source: Linking heat and electricity systems: Co-generation and DHC solutions for a clean energy future. IEA, 2014.

How can policy and market conditions help CHP/DHC projects?

REGULATORY FRAMEWORK LONG-TERM STABILITY

TECHNOLOGY SELECTION INCENTIVES

- –Energy efficiency rewarding policies
- Complementary policies rewarding efficient use of renewable energy sources
- -Interconnection measures
- Local infrastructure and heating/cooling planning

FINANCIAL AND FISCAL INCENTIVES

- –Low interest loans
- –Capacity grants
- –Feed-in tariffs
- –Fiscal incentives

Can help mitigate markets failing to effectively reward energy efficiency

SMART BUSINESS MODELS SUPPORT

- –Support relatedR&D andinternationalcollaboration
- –Promote pilot models
- Integrate lessons learned from pilots and existing models into infrastructure development plans

Thanks

Don't miss: http://www.iea.org/chp/