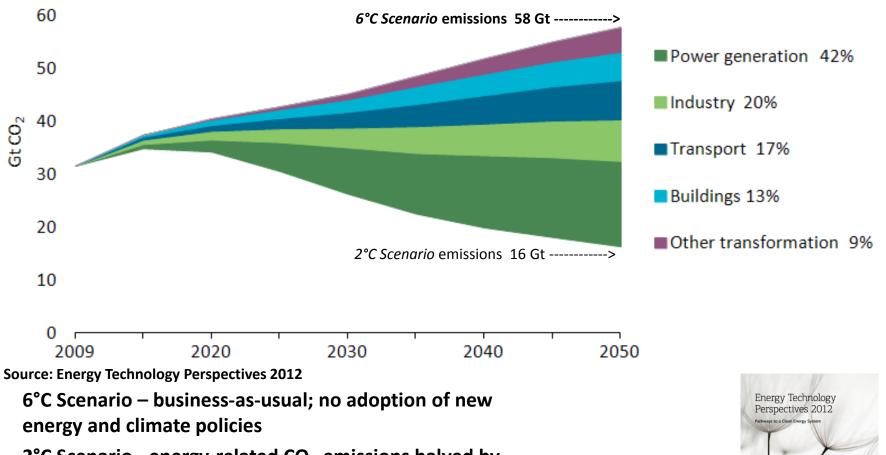


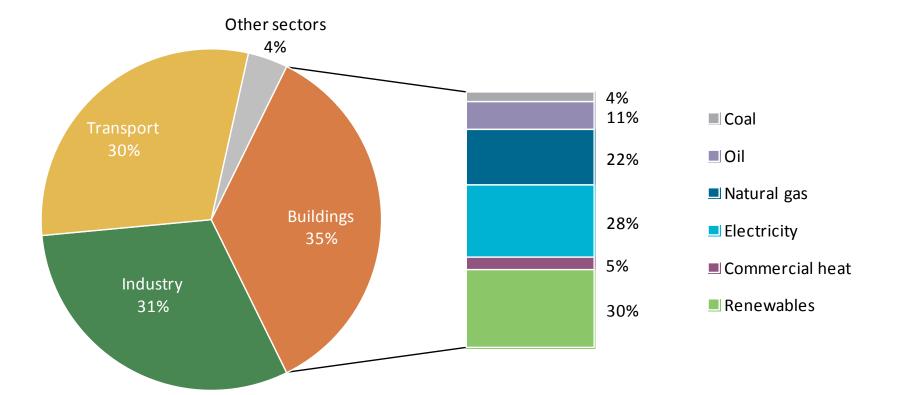
Clean Energy Solutions Center IEA Technology Roadmap: Energy Efficient Building Envelopes Launch

Didier Houssin and Marc LaFrance International Energy Agency


18 December 2013 Paris

Technology Roadmap Energy efficient building envelopes

IEA/SPT Flagship Publication, Energy Technology Perspectives


2°C Scenario - energy-related CO₂-emissions halved by
2050 through CO₂-price and strong policies

ETP 2014 – Expected April 2014

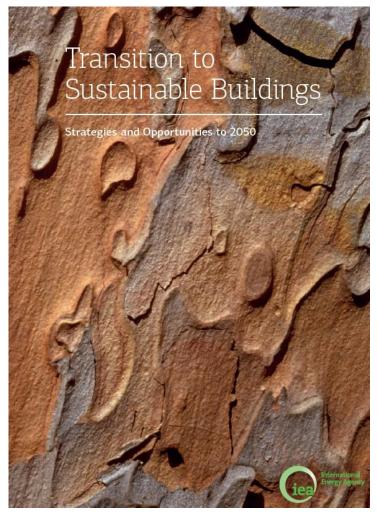
International Energy Agency

Final Energy Consumption by Sector and Buildings Energy Mix, 2010

Buildings largest end-use sector!!

International Energy Agency

Importance of Building's Sector


International Energy Agency

- 1/3 global carbon emissions
- 50% of electricity consumption
- Major portion of GDP, global economic crisis and decline was spurred by building sector collapse in many regions of the world
- Over 75% to 90% of OECD building stock will still be in service by 2050
- Large population growth, mostly in developing world (2.5 billion by 2050), will drive new floor area that needs to be efficient

Transition to Sustainable Buildings: Strategies and Opportunities to 2050

- The overall ETP strategy for buildings
- Global and regional analysis, energy savings and emissions reduction forecasts
- Technical opportunities and recommendations: envelope; heating and cooling; appliances, lighting and cooking
- Policies to transform buildings

Technology Roadmaps and Policy Pathways

- Technology Roadmaps
 - Define and analyse available technologies

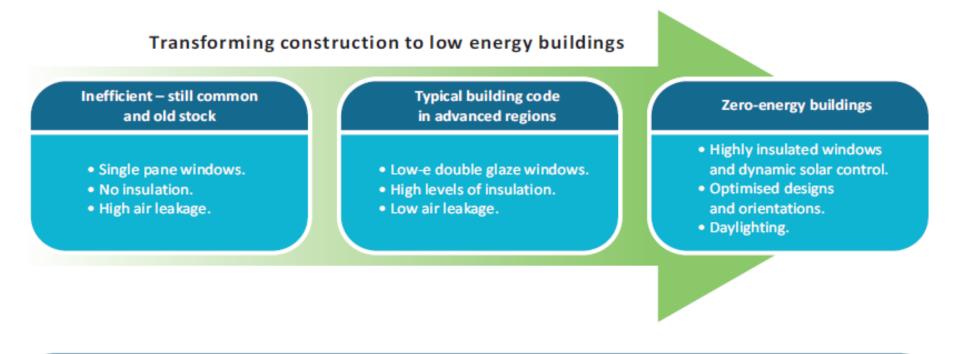
- echnology Roadmap ergy-efficient Buildings: Heating and Cooling Equipment
- Technology Roadmap Solar Heating and Cooling

- Develop vision for R&D and technology deployment
- Assess policy, financial, and related needs
- Policy Pathway
 - Based on one of 25 IEA energy efficiency recommendations
 - 10 step guide for policy planning, implementation, monitoring and evaluation
 - Highlights best experience in countries

© OECD/IEA 201

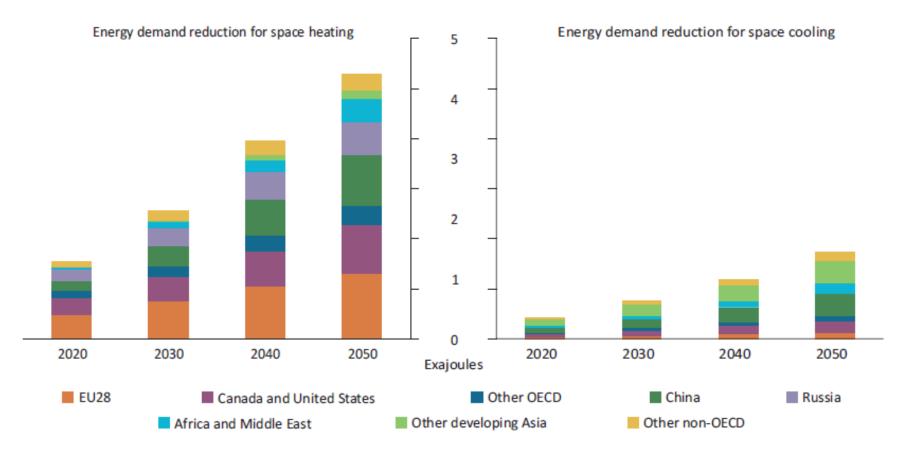
Technology Roadmap Energy Efficient Building Envelopes

- Construction transformation strategy
- Provides technical, economic and strategic framework
- Assessment of high priority areas for 12 regions of the world
 Policy criteria and evaluation


Technology Roadmap

Energy efficient building envelopes

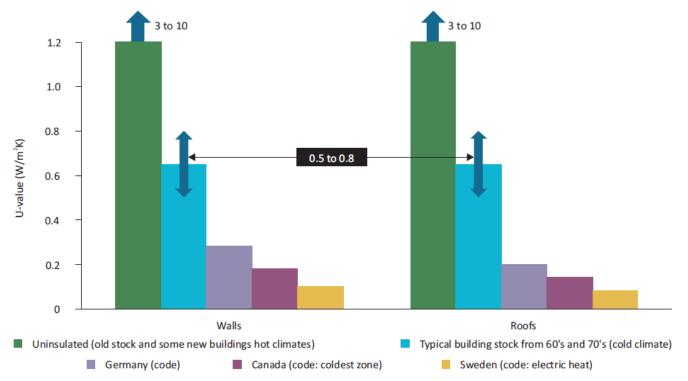
Transformation to Low-Energy Buildings


KEY POINT: the world needs to shift from very old buildings to modern buildings, and then to low-energy or zero-energy buildings. International Energy Agency

Envelope Savings Potential

Figure 8: Energy reductions from improvement in building envelopes between the 6DS and 2DS

International Energy Agency


iea

KEY POINT: building-envelope energy savings under the 2DS are significant, with heating savings around four times higher than cooling savings.

Insulation Opportunity

- Very stringent U-values for electric resistance heaters in Sweden, and Canada's coldest climate zone
- IEA recommending goal for average wall and roof U-values ≤ 0.15 W/m2K cold climate, ≤ 0.35 W/m²K hot climate based on LCC

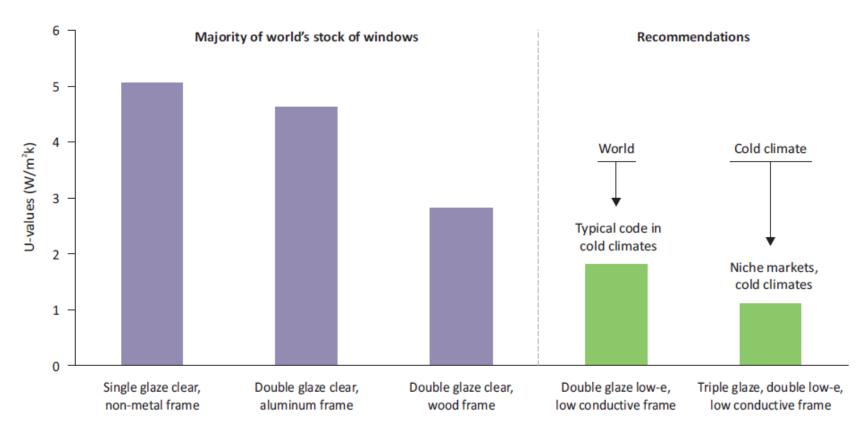
Source: Adapted from IEA (2013a), "Transition to Sustainable Buildings: Strategies and Opportunities to 2050", Organisation for Economic Co-operation and Development (OECD) Publishing, Paris.

KEY POINT: levels of insulation vary widely for the existing stock of buildings, as well as for new construction. International Energy Agency

© OECD/IEA 2013

Validated Air Sealing

- Validated air sealing is a critical measure for building codes and renovation
- Majority of energy performance certificates do not require validation
- More research needed to offer more affordable testing and solutions (mostly for developing markets)



Source: Oak Ridge National Laboratory

Note: U-values presented in this roadmap represent whole-window performance unless noted in accordance with ISO 15099, thus an ISO 10077 standard of 1.0 W/m²K is roughly equal to 1.1 W/m²K per ISO 15099.

KEY POINT: the majority of the world's installed windows can be significantly improved and more work is needed to ensure that new sales meet more stringent performance criteria.

International Energy Agency

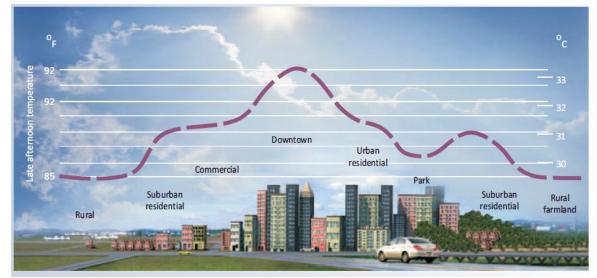

Reflective Roof Opportunity

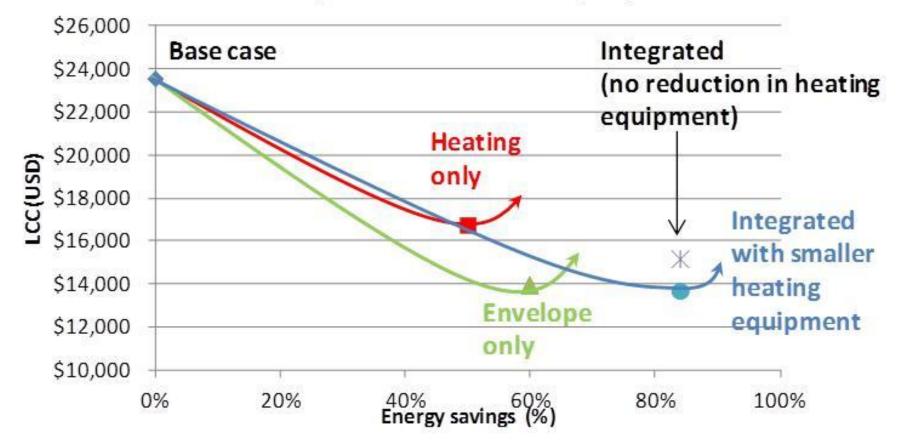
Table 3: Performance characteristics and energy-savings potential for reflective roofs

	SR of a dark roof	SR of a white roof	SR of a cool- coloured roof	Roof energy- savings potential (with high level of insulation)	(with low level of
Roof performance characteristics	SR 5 (black) to SR 20 (grey)	SR 60 (soiled) to SR 80 (clean)	SR 25 (darker colour) to SR 50 (lighter colour)	13%	25%

Note: High insulation refers to a U value of 0.29 W/m²K, and low level of insulation has a U value of 0.51 W/m²K or higher.

Source: LBNL, Heat Island Group

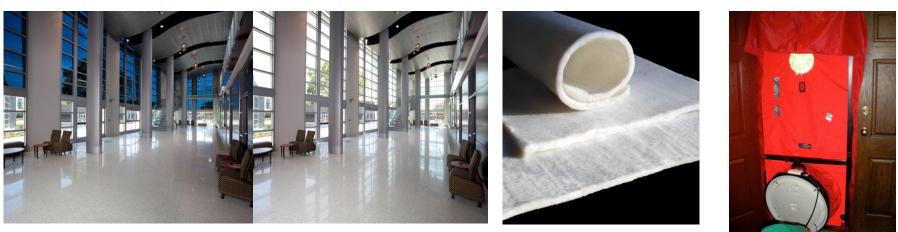
Assessment of Advanced Envelope Components


Market maturity/ saturation	ASEAN	Brazil	China	Euro pean Union	India	Japan/ Korea	Mexico	Middle East	Australia/ New Zealand	Russia	South Africa	United States/ Canada
Double-glazed low-e glass	•			*		•	•		•	•	•	*
Window films									•			•
Window attachments (e.g. shutters, shades, storm panel)	•		•	*		•		•	•		•	•
Highly insulating windows (e.g. triple-glazed)				•								
Typical insulation	*	•	*	*	•	*	•	*	*	*	•	*
Exterior insulation												*
Advanced insulation (e.g. aerogel, VIPs)												
Air sealing				*		•						•
Cool roofs				•								*
BIPV/ advanced roofs												

★ Mature market 🛛 🕘 Established market 🛛 🔺 Initial market

Integrated Approach with Life-Cycle Cost

LCC analysis of efficiency options



R&D Areas

Source: ORNL © OECD/IEA 2013

- Highly insulated windows (U value ≤ 0.6 W/m²K for ZEB) and dynamic solar control integrated solution increase daylight and passive heating harvesting
- Lower air sealing approaches with validation testing
- Lower cost high performance "thin" insulation
- More durable and lower cost reflective surfaces

Source: Sage Electrochromics (St Gobain)

Source: Aspen Aerogel

Criteria for Policy Assessments, IEA Perspective

Policies	ASEAN	Brazil	China	European Union	India	Japan/ Korea	Mexico	Middle East	Australia/ New Zealand	Russia	South Africa	United States/ Canada
Governance	L	М	н	н	М	М	М	L	М	L	М	М
Energy prices	L	М	М	Н	М	Н	L	L	М	L	М	М
Infrastructure and human capacity	М	L	М	н	М	н	М	L	М	М	М	н
Commodity of efficient materials	L	М	н	н	м	н	м	L	М	М	L	н
Voluntary programmes	L	L	L	М	L	L	L	L	L	L	L	L
Mandatory building codes	L	L	М	н	L	М	М	L	М	М	м	Н

Note: H: high, M: medium, L: low

Tracking Progress – Next Steps

International Energy Agency

- Much more data is needed (e.g. new technology adoption rates, market share of zero-energy buildings, etc)
- More specific performance criteria needed even for most advanced regions (e.g. EU specifications for renovation in public buildings)
- IEA is considering a new building's partnership (for policy assessment, to improve data and modeling, and to enable deployment)

- Greater deployment of proven technology in developed countries
- Introduction of mature products and technologies to developing markets (e.g. infrastructure – skills, product availability, performance metrics, etc)
- R&D to improve performance, reduce cost and provide greater overall return on investment

Contact Data

International Energy Agency

9, rue de la Federation 757 Paris Cedex 15, France

Marc LaFrance

Energy Analyst Buildings Sector, Energy Technology Policy Division marc.lafrance@iea.org, +33 (0)1 40 57 67 38

Download Roadmap after launch

http://www.iea.org/publications/freepublications/publication/name,45205,en.html