

Maximizing the value chain: Solar jobs

In partnership with the Clean Energy Solutions Center (CESC)

Hugo Lucas Porta

01.05.2019

Supporters of this Expert Training Series

ASSISTING COUNTRIES WITH CLEAN ENERGY POLICY

Overview of the expert

Factor is an international group, specialized in providing global, innovative and sustainable solutions in areas such as climate change, energy, sustainability, trading and innovation.

Our key value is our people. We have offices in six countries, where our interdisciplinary team works for public and private stakeholders, international organizations and non-profit entities.

Our own history and experiences are based on constant innovation. This helps us target our services, by combining academic knowledge, technology and practical experience.

Hugo Lucas Porta
Head of Energy
Dept, Factor
20 years in RE
Sector
- Worked for
governments and
private sector on
energy transition
strategies

Training Course Material

This Training is part of Module 6, and focuses on solar jobs and the value chain

Overview of the Training

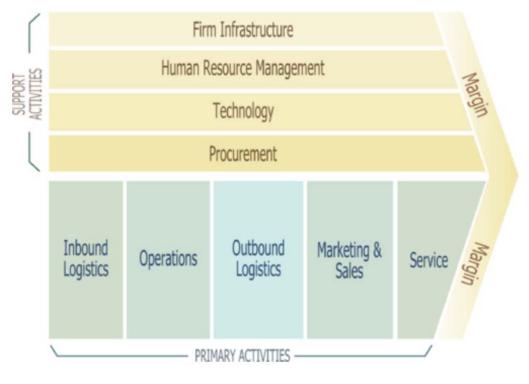
- 1. Introduction: Learning Objective
- 2. Understanding the value chain
- 3. Main body of presentation
- 4. Concluding Remarks
- 5. Further Reading
- 6. Knowledge Check: Multiple-Choice Questions

1. Introduction: Learning Objective

Learning Objective

This lecture provides:

- 1. An overview of the employment in the solar market
- Description of the structure and relevance of the solar PV Value Chain
- 3. Opportunities for policy makers to maximize the Value Chain



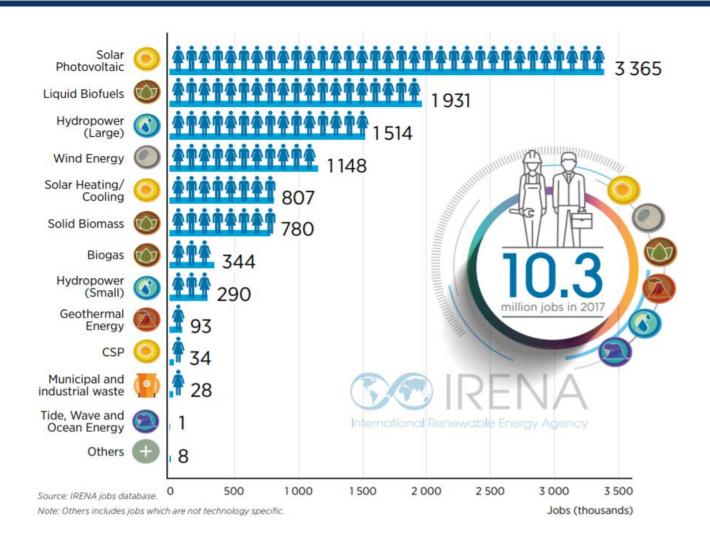
2. The model of the Value Chain

Overview of the value chain

A value chain is a tool for **strategic analysis** for a manufacturing (or service) organization as a system, made up of subsystems each with **inputs**, **transformation processes and outputs**.

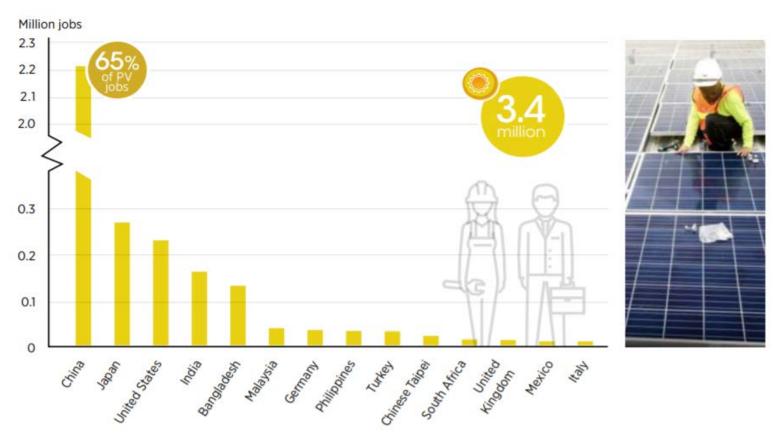
Source: Solar DAO

3. Main Body of Presentation



Main Body of Presentation

- 1 Overview of the employment in the solar market
- 2 Introduction to the Solar PV Value Chain
- 3 Maximizing the Value Chain
- 4 Opportunities of value maximizing along the Value Chain



Overview of the solar market

Overview of the solar market – Solar PV

Leaders in Solar PV employment

Source: IRENA jobs database.

Note: The threshold for inclusion in the figure is 10 000 jobs.

Overview of the solar market – Heating and Cooling

Source: Greentech Media

Overview of the solar market - China

- Largest number of people employed in renewable energies
 Solar PV:
 - 2.2 million jobs total (+13%);
 - 1.4 million in manufacturing.

Source: Solar Tribune

Overview of the solar market – USA

- Number of solar jobs fell by 9,800 to about 250,000
- Most of the loss in the installation segment
- Installation gains more than half of all US solar jobs

Source: PV Magazine

Overview of the solar market – India

- Solar installations reached new record.
- Employment increased by 36%.
- Construction and Installations account for 46% of the jobs.

Source: Greentech Media

Main Body of Presentation

1 Overview of the employment in the Solar Market

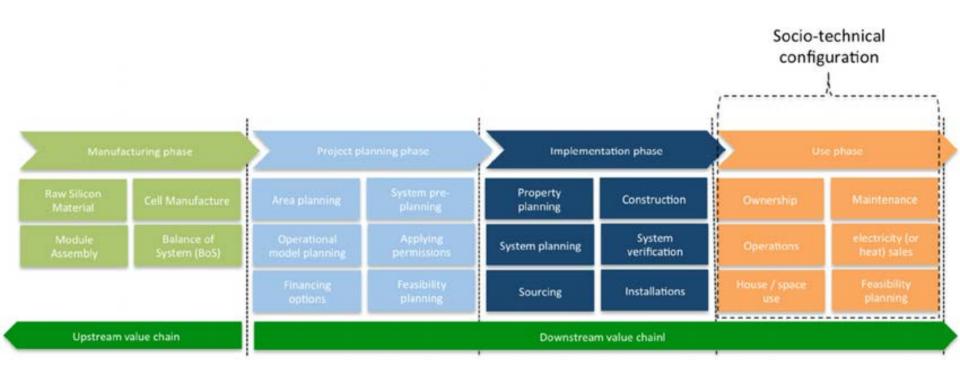
2 Introduction to the Solar PV Value Chain

3 Maximizing the Value Chain

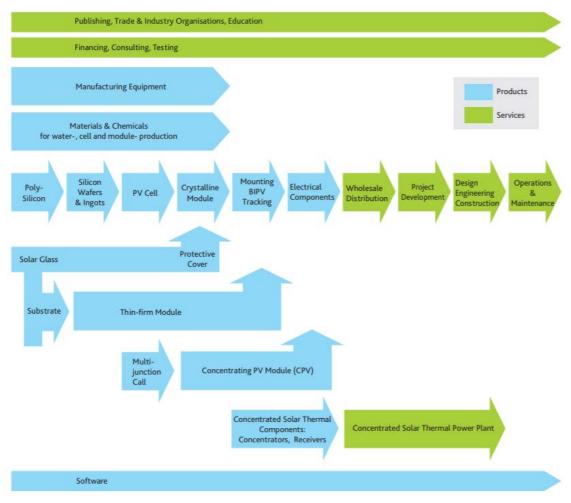
4 Opportunities of value maximizing along the Value Chain

The PV Value Chain (multi-crystalline)

Polysilicon

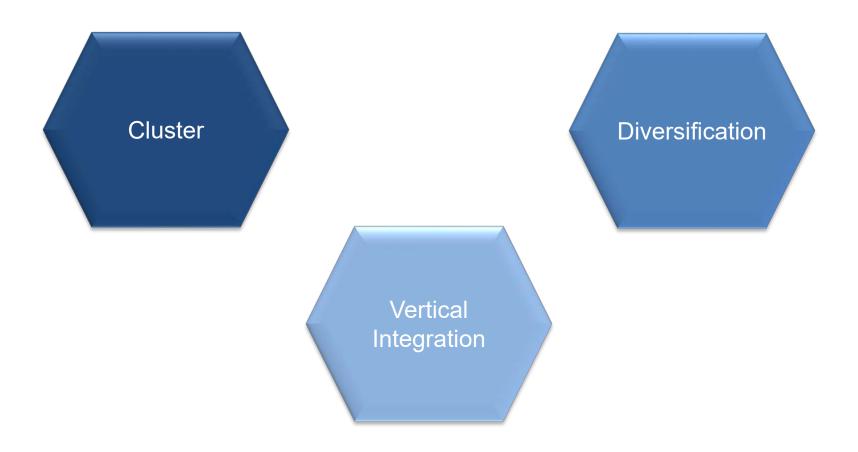

Wafer

Solar Cell


Solar Module

Systems

Source: Solar DAO



Source: Solar DAO

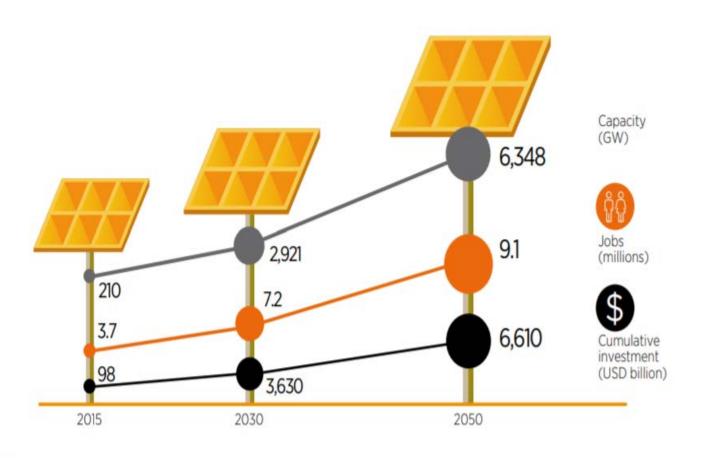
Source: QSTec

Main Body of Presentation

- 1 Overview of the employment in the Solar Market
- 2 Introduction to the Solar PV Value Chain
- 3 Maximizing the Value Chain
- 4 Opportunities of value maximizing along the Value Chain

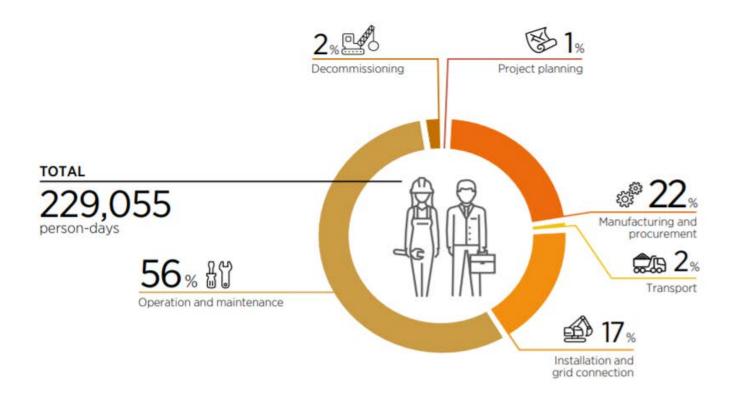
Maximizing the Value Chain – Production perspective

Technology Differentiation

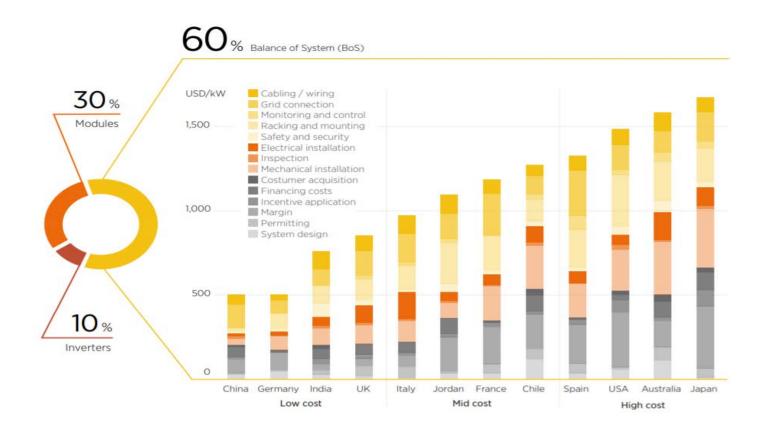

Technology Strategy Product
Quality and
Certification

Production Capability

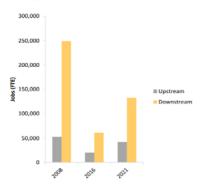
Cost Structure Vertical Integration

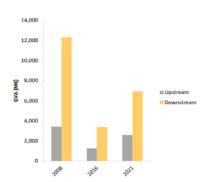

Financial Strength

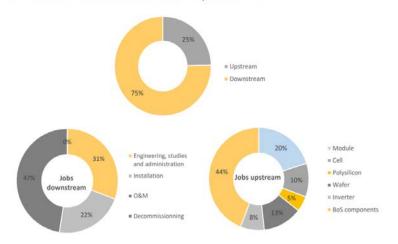
Branding



Note: Jobs include solar water heating jobs.

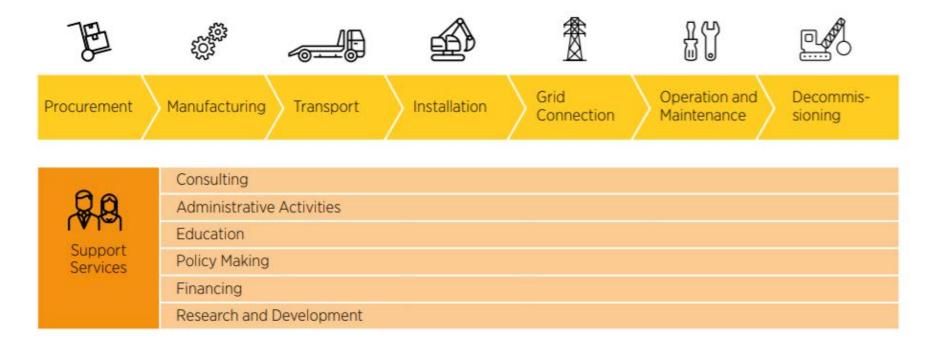






Job support and GVA creation upstream and downstream activities

Breakdown of value chain activities for EU28 2008, 2016 and 2021


Source: EY

Main Body of Presentation

- 1 Overview of the employment in the Solar Market
- 2 Introduction to the Solar PV Value Chain
- 3 Maximizing the Value Chain
- 4 Opportunities of value maximizing along the Value Chain

Project planning

TYPE OF HUMAN RESOURCES	Site selection	Feasibility analyses	Engineering design	Project development	Total by occupation
Legal, energy regulation, real estate and taxation experts	180	60	85	500	825
Financial analysts	-	30	-	500	530
Electrical, civil, mechanical and energy engineers	120	130	135	-	385
Logistic experts	-			250	250
Environmental experts	60	30	-	-	90
Health and safety experts	-	-	40	-	40
Total (as %)	360 (17%)	250 (12%)	260 (12%)	1,250 (59%)	2,120

Manufacturing and procurement

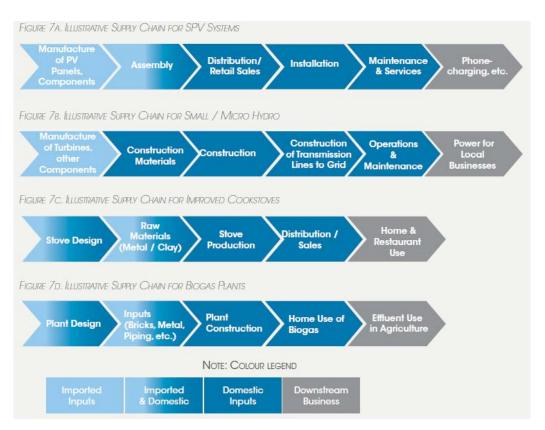
TYPE OF HUMAN RESOURCES	Solar cells	Solar modules	Inverters	Solar trackers and structures	Total by occupation
Factory workers and technicians	16,800	6,300	4,970	3,850	31,920
Industrial engineers	2,310	1,050	980	840	5,180
Administrative personnel	770	770	490	420	2,450
Marketing and sales personnel	770	1,540	:=	-	2,310
Logistic experts	770	350	490	420	2,030
Quality control experts	770	175	490	420	1,855
Health and safety experts	770	175	490	420	1,855
Regulation and standardisation experts	770	175	490	420	1,855
Chemical engineers	770	y=-	1.7	770	770
Total (as %)	24,500 (49%)	10,535 (21%)	8,400 (17%)	6,970 (14%)	50,225

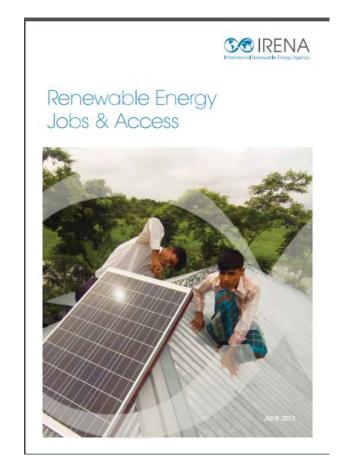
Installation and grid connection

TYPE OF HUMAN RESOURCES	Site prepa- ration and civil works	Assembling equipment	Cabling and grid connection	Commis- sioning	Total by occupation
Construction workers and technical personnel	20,000	8,500	6,000	1,000	35,500
Civil engineers and foremen	1,400	900	-	-1	2,300
Health and safety experts	450	150	100	100	800
Electrical and mechanical engineers	-	-	180	200	380
Environmental experts	300	-	-		300
Quality-control experts	20	20	100	120	100
Total (as %)	22,150 (56%)	9,550 (24%)	6,380 (16%)	1,300 (4%)	39,380

Operation and maintenance

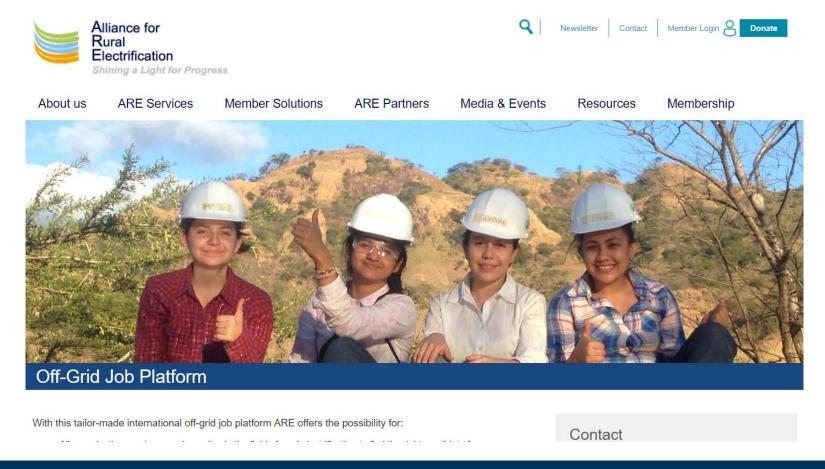
TYPE OF HUMAN RESOURCES	Operation	Maintenance	Total by occupation	
Construction workers	-	5,313-7,650	5,313-7,650	
Safety experts	-	2,253-2,975	2,253-2,975	
Industrial, electrical and telecommunication engineers	486	1,488	1,974	
Operators	1,100	*	1,100	
Technical personnel	-	893-1,190	893-1,190	
Administrative and accountant personnel	179	-	179	
Lawyers, experts in energy regulation	114	-	114	
Management	57	÷	57	
Total (as %)	1,770 (~14%)	9,946-13,302 (-86%)	11,882 - 15,239 (13,560 average)	




Decommissioning

TYPE OF HUMAN RESOURCES	Planning the activity	Dismantling the project	Disposing of equipment	Clearing the site	Total by occupation
Technical personnel and construction workers	-	2,000	750	1,000	3,750
Truck drivers and crane operators	-:	740	-		740
Industrial/mechanical/ electrical engineers	30	160	-	40	230
Environmental experts	25	80	40	40	185
Safety experts	-	80	40	40	170
Logistic experts	25	8	60	*	85
Total (as %)	80 (2%)	3,060 (60%)	890 (17%)	1,120 (21%)	5,150

Access and Jobs



Education and training shortage

Access and Jobs

4. Concluding Remarks

Concluding Remarks

- 1. Several forces define the socio-economic impacts of the PV industry. The most significant are: **annual installed capacity**, **efficiency gains in manufacturing and services and incentive schemes** for installations.
- 2. Opportunities for domestic value creation can be created at each segment of the value chain, in the form of jobs and income generation for enterprises operating in the country.
- Opportunities for leveraging local labor markets and existing industries can be identified to maximize domestic value.

Thank you for your time!

ASSISTING COUNTRIES WITH CLEAN ENERGY POLICY

5. Further Reading

IRENA (2018): Renewable Energy and Jobs, Annual Review 2018. Available at: https://irena.org/-

/media/Files/IRENA/Agency/Publication/2018/May/IRENA_RE_Jobs_Annual_Review_2018.pdf

IRENA (2017): Renewable Energy Benefits, Leveraging Local Capacity for Solar PV. Available at: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2017/Jun/IRENA Leveraging for Solar PV 2017.pdf?la=en&hash=8F7696966CF492DE832EA83024021B98E37A0260

EY (2017): Solar PV Jobs & Value Added in Europe. Available at: https://www.ey.com/Publication/vwLUAssets/EY-solar-pv-jobs-and-value-added-in-europe.pdf

ICTSD (2017): Building Supply Chain Efficiency in Solar and Wind Energy. Available at:

https://www.ictsd.org/sites/default/files/research/building_supply_chain_efficiency_in_solar_and_wind_energy_digital.pdf

6. Knowledge Checkpoint: Multiple Choice Questions

