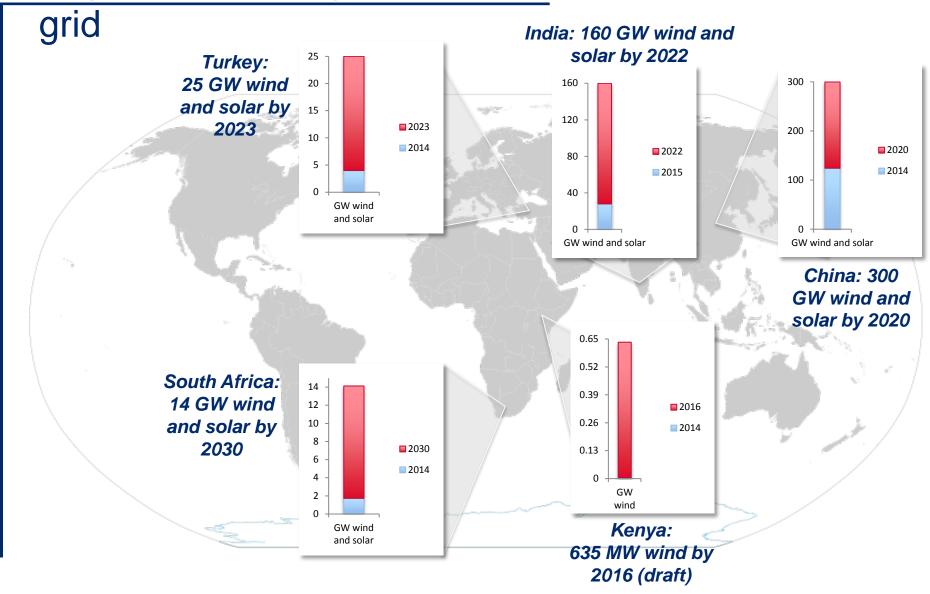
Best Practices in Conducting Grid Integration Studies


Agenda and Learning Objectives

- Part 1: Why conduct a grid integration study?
 - Define the concept and understand why grid studies are important.
- Part 2: What can a grid integration study address?
 - Understand the types of grid integration studies and their applications.
- Part 3: What is the process of conducting a grid integration study?
 - Identify the stakeholders, data, and analyses required to conduct a grid integration study.
- Part 4: Questions and panel discussion

Part 1

WHY CONDUCT A GRID INTEGRATION STUDY?

Motivation: ambitious renewable energy (RE) targets will add significant wind and solar to the

Significant variable RE on the grid will drive an evolution in power system planning and operation

Wind and solar are variable and uncertain

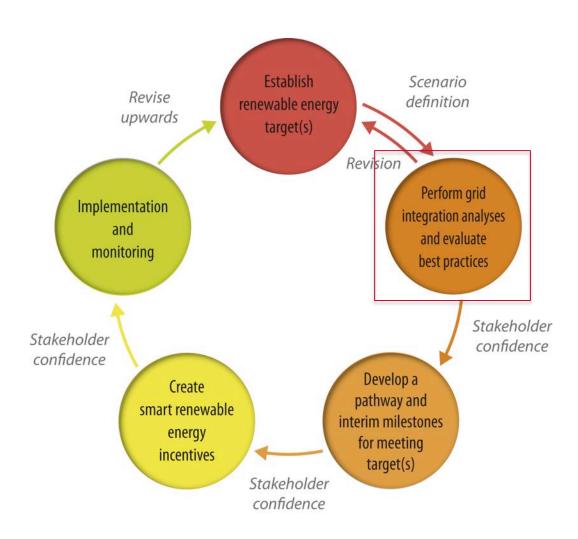
Current operational practices may not be adequate to efficiently manage high penetration levels of RE

- Medium variable RE penetrations:
 Likely least-cost source of flexibility is to change how the system is operated (institutional measures)
- High variable RE penetrations:
 Might need new physical sources of flexibility

"Low," "medium," and "high" are power system-specific thresholds

Low variable RE penetrations:
 Most systems sufficiently flexible*

^{*}Flexibility refers the ability of the power system to respond to change in demand and supply


How will variable RE impact a specific power system?

A *grid integration study* is an analytical framework for evaluating a power system with high levels of variable RE.

Outcomes

- Simulates operation of the power system under different future scenarios.
- Identifies reliability constraints.
- Determines relative costs of actions to help integrate RE.
- Addresses system operator concerns that the system can work reliably and cost-effectively.

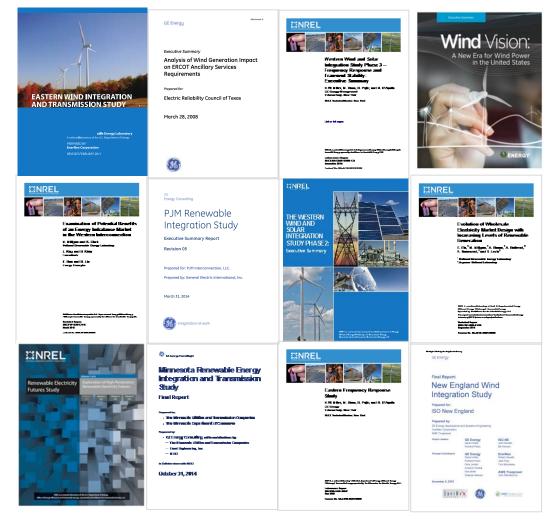
Grid integration studies are critical to meeting (and exceeding) RE targets

Example: Integration studies have helped inform California's RE targets

Year Passed	RE Generation Target	Integration studies to meet target
2002	20% by 2017	
2003	20% by 2010	California ISO (2007, 2010)
2011	33% by 2020	California ISO (2011)
2015	50% by 2030	E3 (2014)

Key Findings:

- Strong stakeholder engagement is key to building confidence in the conclusions of the studies.
- System operators have been creative in solving challenges to meet each interim target.


Part 2

WHAT CAN A GRID INTEGRATION STUDY ADDRESS?

Impacts of high RE on:

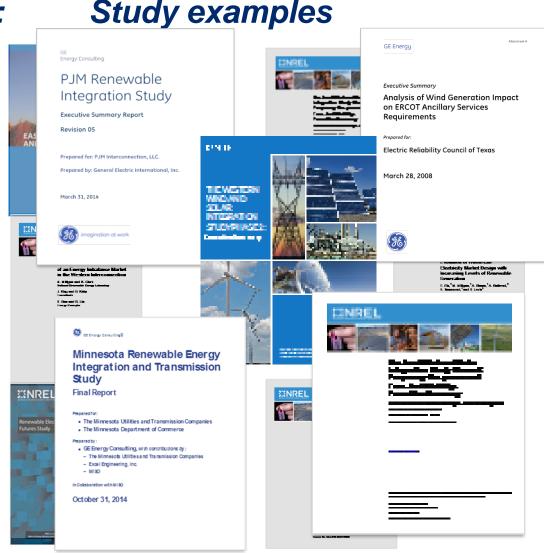
- Capacity expansion generation and transmission
- Hourly system balancing, costs, emissions
- Operations at subhourly timeframes
 - Ancillary services
 - Cycling impacts on thermal fleet
- Grid stability following a disturbance
- Market design

Study examples

Impacts of high RE on:

- Capacity expansion generation and transmission
- Hourly system balancing, costs, emissions
- Operations at subhourly timeframes
 - Ancillary services
 - Cycling impacts on thermal fleet
- Grid stability following a disturbance
- Market design

Study examples


Impacts of high RE on: Study examples

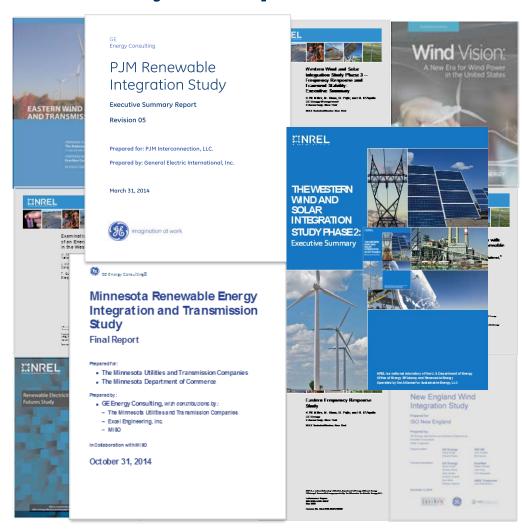
- Capacity expansion generation and transmission
- Hourly system balancing, costs, emissions
- Operations at subhourly timeframes
 - Ancillary services
 - Cycling impacts on thermal fleet
- Grid stability following a disturbance
- Market design

Impacts of high RE on:

- Capacity expansion generation and transmission
- Hourly system balancing, costs, emissions
- Operations at subhourly timeframes
 - Ancillary services
 - Cycling impacts on thermal fleet
- Grid stability following a disturbance
- Market design

Impacts of high RE on:

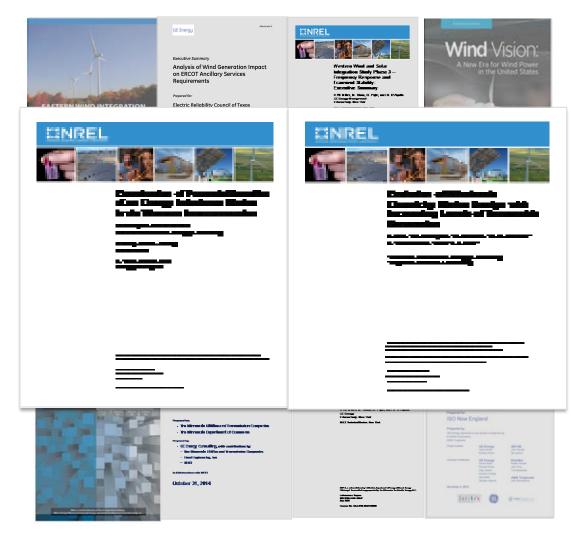
- Capacity expansion generation and transmission
- Hourly system balancing, costs, emissions
- Operations at subhourly timeframes
 - Ancillary services
 - Cycling impacts on thermal fleet
- Grid stability following a disturbance
- Market design


Study examples

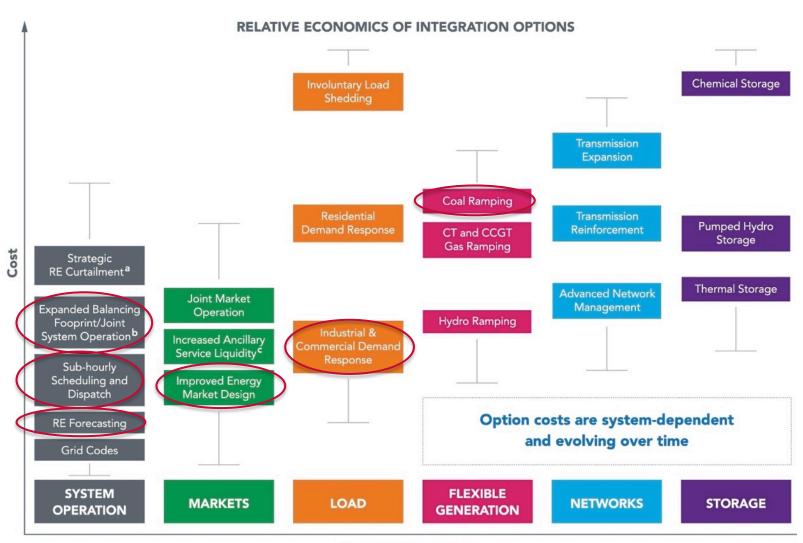
Impacts of high RE on:

- Capacity expansion generation and transmission
- Hourly system balancing, costs, emissions
- Operations at subhourly timeframes
 - Ancillary services
 - Cycling impacts on thermal fleet
- Grid stability following a disturbance
- Market design

Study examples

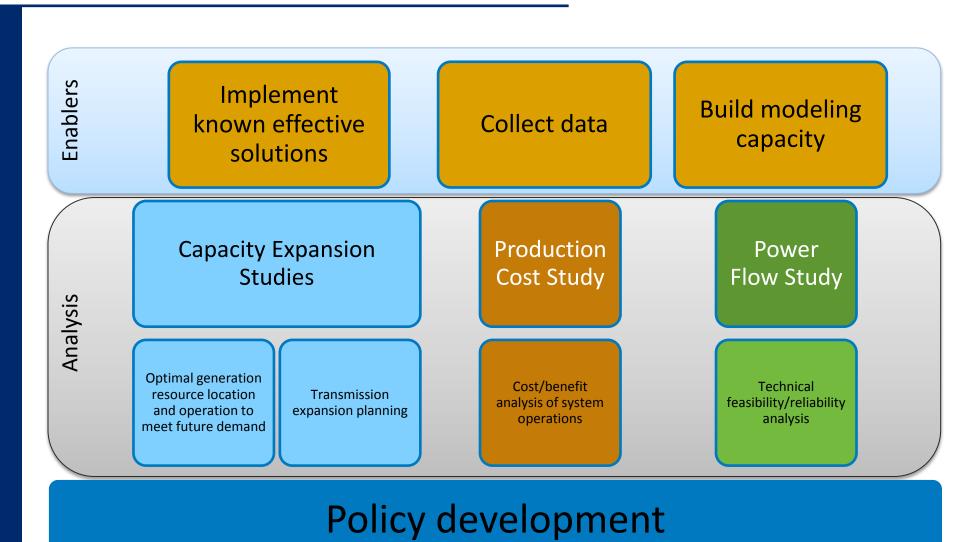

Impacts of high RE on: Study examples

- Capacity expansion generation and transmission
- Hourly system balancing, costs, emissions
- Operations at subhourly timeframes
 - Ancillary services
 - Cycling impacts on thermal fleet
- Grid stability following a disturbance
- Market design



Impacts of high RE on: Study examples

- Capacity expansion generation and transmission
- Hourly system balancing, costs, emissions
- Operations at subhourly timeframes
 - Ancillary services
 - Cycling impacts on thermal fleet
- Grid stability following a disturbance
- Market design



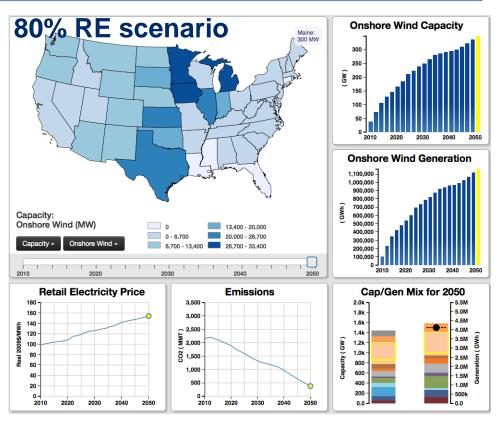
A grid integration can show relative costs of integration options

Type of Intervention

Integrating RE through informed policy

Optimize resource planning through Capacity Expansion Modeling

- Approach: policy and planning focus; optimize least cost (capital and operations) solution subject to (modeling and policy) constraints.
- Scenario drivers: policy, technological advancement, transmission, fuel prices, weather/drought
- **Modeling horizon**: medium- to long-term (e.g., 20-50 year horizon).
- Key inputs: high resolution data on RE resource availability, capital costs
- Key outcomes: Effects of climate and energy policies; can inform generation buildout for production cost studies.

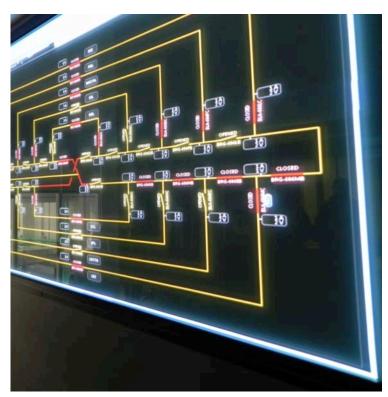

Source: Schroeder 2014 (NREL PIX 31732)

Example: RE could supply 80% of total U.S. load

bv 2050

RE-Futures Key Question:

To what extent can RE supply meet the electricity demands of the continental U.S. through 2050?

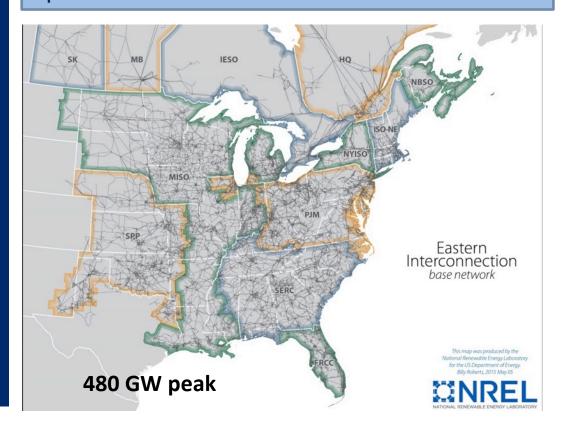

Findings:

- RE generation from technologies commercially available today can supply 80% of total U.S. electricity generation in 2050.
- Increased electric system flexibility will be necessary to enable high levels of generation and can come from a portfolio of supply- and demand-side options.
- RE generation can result in deep reductions in electric sector greenhouse gas emissions and water use.
- Improvement in cost and performance of RE technologies will be important to reducing incremental costs.

Source: NREL. (2012). Renewable Electricity Futures Study.

Test impacts of future RE scenarios through Production Cost Modeling

- Approach: system operations focus; unit commitment and dispatch analysis subject to physical and economic constraints.
- Scenario drivers: RE penetration, flexibility measures (forecasting, demand response, thermal cycling, storage), fuel costs
- Modeling horizon: hourly resolution, one-year horizon.
- Key inputs: detailed data on generation fleet characteristics, time synchronous RE and load data.
- Key outcomes: Operational feasibility and costs of policies and new/retired generation; can inform power flow studies.



Source: Adams 2013 (NREL PIX 24927)

Example: the Eastern Interconnection could handle significant RE penetration

ERGIS Key Question:

What effect will 30% energy generation by wind and solar have on power system operations?

Methods:

- Analyze wind and solar potential for the whole region
- High resolution representation of power system (60,000 lines, 7500 generators, 5-min dispatch, etc.)
- Simulate 2026 operations
- Additional focused analysis of "interesting periods" (e.g., high wind, large ramp)

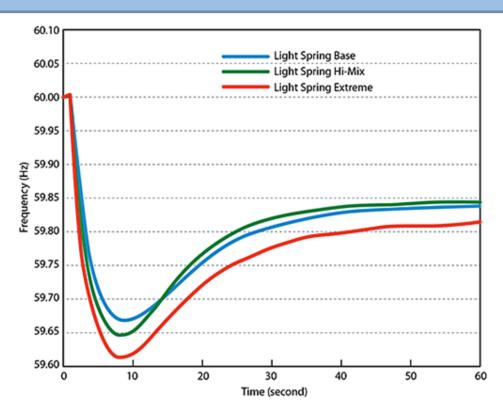
Findings:

- High (30%) solar penetrations in FRCC cause negative net load about 8% of the hours each year.
- SPP can supply SERC with large amounts of wind generation (up to 2/3 of its local generation). Balancing will likely need to be shared

Source: NREL. (Forthcoming). Eastern Renewable Generation Integration Study.

Determine technical feasibility and reliability impacts through **Load Flow Modeling**

- Approach: model real and reactive power flow, voltage stability, fault tolerance, and contingency response.
- Scenario drivers: RE penetration, disturbances, extreme conditions (e.g., high RE/low load, low RE/high load).
- Modeling horizon: short (<5s), correlating to periods of system stress.
- Key inputs: dynamic generator modeling parameters, transmission line impedances, transformer details and tap settings.
- Key outcomes: Technical feasibility and reliability impacts of operational changes; necessary mitigation procedures



Source: Gretz (NREL PIX 10924)

Example: No barriers to achieving system stability or frequency response targets under high RE

WWSIS-3 Key Question:

How would high penetrations of wind and solar impact the large-scale transient stability and frequency response of the U.S. Western Interconnection?

Findings:

- There are no fundamental barriers to the Western Interconnection meeting transient stability and frequency response objectives with higher levels of wind and solar generation.
- Good system planning and power system engineering practices (e.g., transmission system improvements) are necessary to achieving high RE penetrations.
- Sharing frequency-responsive resources across balancing areas can help mitigate the potential impacts of distributed

Source: Miller et al. (2014). Western Wind and Solar Integration Study Phase 3- Frequency Response on Thereigh Ulk power system.

Part 3

WHAT IS THE PROCESS OF CONDUCTING A GRID INTEGRATION STUDY?

The process of a grid integration study typically includes these major steps

Step 1: Collect Data

Wind / Solar Profile
Development (Resource +Location)

Existing system data (load, grid, power plants, etc.)

Step 2:

Develop Scenarios (one or more of these):

Resource Scenarios

(wind, solar, conventional, demand response, storage)

Transmission Scenarios

System Management Scenarios (Design/Planning/Reserves/Operation al Methods/Markets)

Stakeholder Meetings

Step 3:

Simulate the power system (one or more of

these):
Production Cost
Simulation and
Flexibility
Assessment

Dynamics

Load Flow

Capacity Value/Reliability

Stakeholder Meetings

Step 4: Analyze and Report

Data analysis and output synthesis

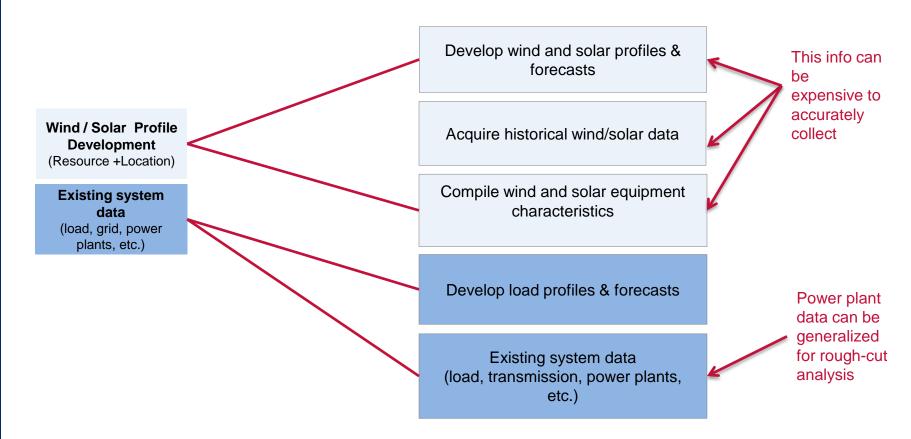
Final Report

Stakeholder Meetings

Important Considerations

- Significant data collection and preparation
- Stakeholder engagement at each phase

Stakeholder Meetings


Input

Scenario

Simulation

Output

Step1: Collect Data

Inputs

- Area of study (province- or state-level, regional, national...)
- Solar and wind resource data (hourly, location-specific). New addition to traditional planning!
- System data (load profile, historical load forecast errors, individual power plant capabilities)
- Operating parameters (how system is operated, e.g., scheduling, market rules)

The importance of time-synchronous data

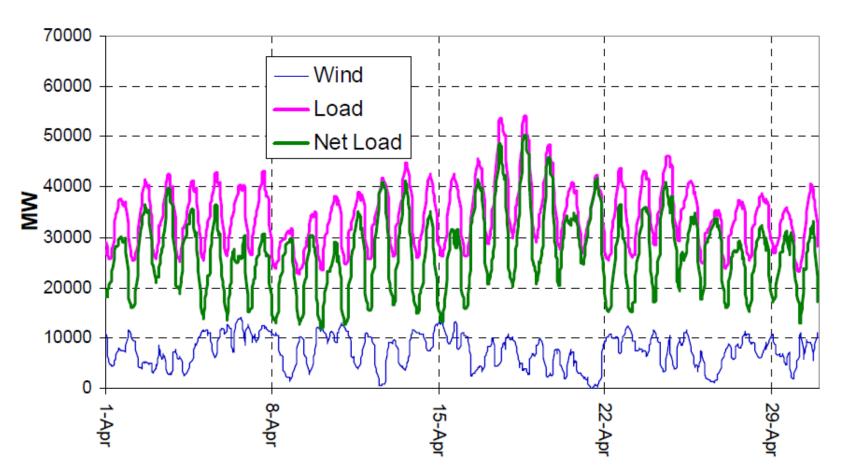
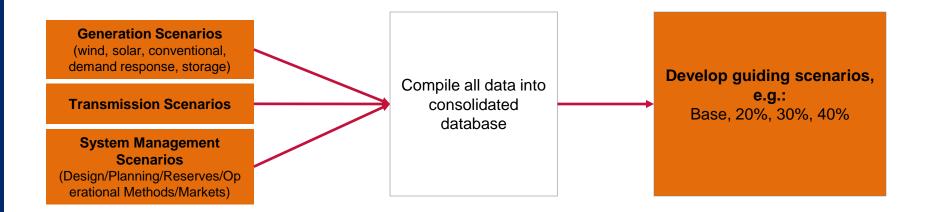
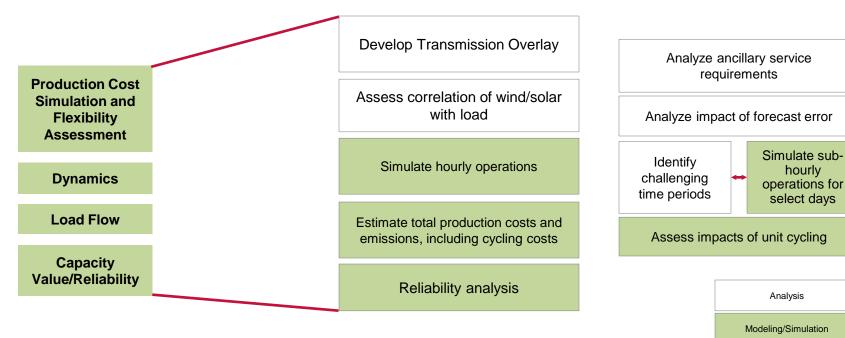
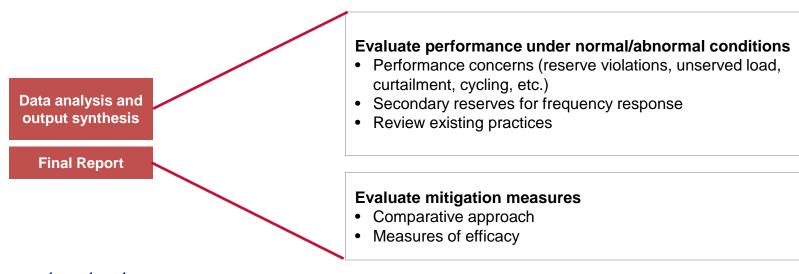



Figure 2- Load, 15 GW of wind generation, and net load for April of study year


Source: ERCOT 2008

Step 2: Develop Scenarios

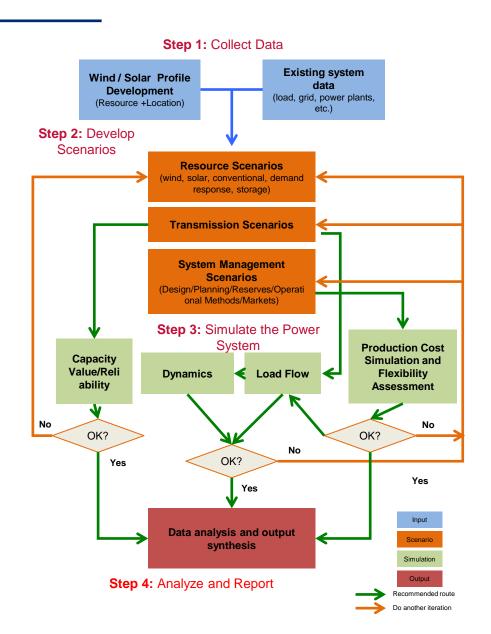
- Example scenarios include:
 - Base case (no/current RE or business as usual in a target year)
 - 10-, 20-, 30% energy penetration of variable RE
 - Variations on location (e.g., trade-off between best RE resources and need for new transmission).
- Scenarios may include sensitivity analysis that evaluate actions that can improve RE integration, such as demand response or improved forecasting


Step 3: Simulate the Power System

Modeling considerations:

- Hourly dispatch simulation for at least 1 year using time-synchronized weather-load data
- Sub-hourly operations for challenging time periods
- Impacts on power plant wear & tear, fuel use, emissions
- Ancillary service requirements
- Impacts on market prices
- Planning reliability (e.g., evaluation of capacity value of solar, wind)
- Operational reliability (load flow simulations, dynamic stability analyses)

Step 4: Analyze and report


Report outputs

- Production costs
- Capacity and generation by plant type, including RE curtailments
- Fuel consumption
- Energy transfers and power flows
- Operational feasibility (including solutions to infeasibilities)
- Cost/benefit of specific integration options, including options aimed at mitigating negative effects of RE integration.

Study Phases

Significant Iteration:

- Step 1 (data) strongly influences
 Step 2 (scenario development).
- Step 2 (scenarios) and Step 3 (modeling and analysis) strongly interact, and multiple iteration loops can be necessary to identify system performance boundaries and cost impacts.
- Results of Step 3 (modeling and analyses) strongly influence outputs and mitigation options, and help identify the long-term solutions for grid integration.

Stakeholder engagement is critical to ensure the study is relevant to industry and technically

accurate

Technical review committees (TRC) are an example mechanism to engage stakeholders

- Assist modelers in guiding study objectives, scenarios, and sensitivities
- Reviews study assumptions and results on multiple occasions throughout course of study.
- Endorses technical rigor of

Example TRC members:

- System operators
- Utilities (if distinct from system operator)
- RE plant owners/operators/developers
- Conventional plant owners/operators/developers
- Transmission developers
- Regulators
- Public Advocates

Example: Western Wind and Solar Integration Study TRC (select names)

System Operators

Xcel Energy

PacifiCorp

Bonneville Power Administration

California Independent System Operator (ISO)

New England ISO

Other private sector; government

GE Energy

Energy Exemplar

NextEra Energy Resources

U.S. Department of Energy

Research institutes and organizations

Electric Power Research Institute

Western Electricity Coordinating Council

DOE National Laboratories

Utility Variable Integration Group

Western Governors' Association

Tips for your own studies

- Clearly defined study questions
 - What is it that you want to learn?
 - Reliability is measured at a variety of time scales and with many metrics
 - Cost efficient for whom, when?
- Best tools for the question
 - Are the right tools being used to answer your questions?
- Data
 - Do you have the data to answer your questions?
 - Where can you get the data?
- Transparency
 - Is the process for developing methods and assumptions for analysis transparent?
- Peer reviewed
 - Do impartial external experts review the results?

Key Takeaways

- A grid integration study provides a power system-specific assessment of the challenges and solutions associated with future RE scenarios.
- Grid integration studies evolve over time; each study frames the key questions for subsequent efforts.
- Stakeholder input should inform the communication of results to ensure that study outputs are actionable and policy-relevant.
- The ultimate goal for the studies is to give power sector stakeholders the information and confidence they need to take action to meet RE targets.

Learn more at greeningthegrid.org

Part 4

QUESTIONS AND PANEL DISCUSSION

Contacts and Additional Information

Clayton Barrows, Ph.D.
National Renewable Energy
Laboratory
Clayton.Barrows@nrel.gov

Webinar Panel

Jaquelin Cochran, Ph.D.

National Renewable Energy
Laboratory
Jaquelin.Cochran@nrel.gov

Jennifer Leisch, Ph.D.
United States Agency for
International Development
jleisch@usaid.gov

Jessica Katz
National Renewable Energy Laboratory

<u>Jessica.Katz@nrel.gov</u>

Greening the Grid

greeningthegrid.org

Email: greeningthegrid@nrel.gov