

International Solar Alliance Expert Training Course: Session 7

Solar PV Policy: NET-FITs

In partnership with the Clean Energy Solutions Center Toby D. Couture

December 2018

Supporters of this Expert Training Series

ASSISTING COUNTRIES WITH CLEAN ENERGY POLICY

Overview of Training Course Modules

This Training is part of Module 1, and focuses on the issue of NET-FITs

Overview of the Presentation

- 1. Introduction: Learning Objective
- 2. Main body of presentation
- 3. Concluding Remarks
- 4. Further Reading
- 5. Knowledge Check: Multiple-Choice Questions

1. Introduction: Learning Objective

Learning Objectives

- Understand NET-FITs
- Understand how NET-FIT policies emerged and how they differ from traditional Net Metering and FIT policies
- Understand where NET-FITs are currently being used in jurisdictions around the world
- Understand the advantages and challenges of NET-FIT policies for scaling-up distributed solar

2. NET-FIT Policies

Introduction to NET-FITs

- Net Feed-in Tariffs (NET-FITs) emerged first in Australia in the 2000s:
- Classic "Germany-style" FIT = payment for 100% of output: a so-called "gross" FIT
- Australia's policy is a "net" Feed-in tariff, as a payment is only offered for the net excess generation. Such an arrangement can simply be called a "Feed-in Tariff" but this leads to confusion: useful to distinguish between "net" and "gross" FITs
- A NET-FIT = cash payment strictly for the <u>net excess</u> generation exported to the grid

https://www.dnrm.ald.gov.au/ data/assets/pdf_file/0005/1379678/solar-bonus-scheme.pdf

Introduction to NET-FITs

Formula for NET-FITs:

Payment for net excess generation = A specific cash payment (in \$/kWh), typically determined by the utility or regulator

Excess electricity injected into the grid results in a cash payment (\$/kWh)

The customer receives both a bill, and a check

Overview of DG Policies

Policy Mechanism	Relation to the Retail Rate	Possibility of Cash Payment (Y/N)
Net Metering	<u>At</u> the retail rate	No
Net Billing	Below the retail rate	Typically not
NET-FIT	Typically <u>below</u> the retail rate	Yes
"Classic" FIT	No relation to the retail rate: Set at the LCOE of each technology	Yes

NET-FITs

The NET-FIT rate can be defined in a range of different ways:

- 1. The wholesale market rate
- 2. The "time of use" rate
- 3. The avoided cost rate
- 4. The "value of solar" rate
- 5. Some other rate as set by the regulator

NET-FITs

Depending on how the NET-FIT rate it set, it may result in cost savings or cost impacts for the utility and its customers

In Australia in the 2000s, the NET-FIT rate was set above retail prices in order to catalyze the market (e.g. AUD \$0.44/kWh in Queensland)

Since then, the rate has been dropped (in most cases outside of Victoria, which adopted time-of-use pricing) to between 7-12 cents/kWh and differs by State and by utility

https://www.dnrm.gld.gov.au/ data/assets/pdf file/0005/1379678/solar-bonus-scheme.pdf

Australia's NET-FITs are now below retail prices and differ by utility

State	Current policies	Size Caps	Rate Paid
vic	Two options from 1 July 2018: 1. A flat, minimum rate of 9.9c/kWh for excess solar energy; or 2. A time-varying rate between 7c and 29c/kWh	Up to 100kW	Depends on retailer, but current minimum rates start at 7c/kWh (see 'Current Schemes' column)
SA	No mandatory minimum rate; customers can search around for competitive rates	10kVA – approx 10kW – per phase (most households are single phase), or 30kVA total	Depends on retailer: Currently ~7-15c/kWh
ACT	No mandatory minimum rate; customers can search around for competitive rates	5kW for single phase connections, 30kW for 3-phase connections	Depends on retailer: Currently ~8-17c/kWh
QLD	No minimum feed-in tariff rate for residential customers in southeastem QLD (rates depend on retailer competition)	Southeast QLD: 5kW for single phase, 15kW for 3-phase	<u>retailer</u> – currently about 10-16c/kWh
NSW	No mandatory minimum rate; customers can search around for competitive rates	Depends on network, but generally 5kW for single phase and 30kW for 3-phase	Depends on retailer: Currently about 6-16c/kWh

https://www.solarchoice.net.au/solar-rebates/solar-feed-in-rewards

NET-FITs have declined to track PV costs

NET-FIT prices in Australia have come down significantly as solar PV costs have declined:

- In 2011, a 5kW system cost between \$17,000 and \$25,000 after rebates.
- Today, the same size system costs between \$4,000 and \$8,000 without rebates

Moreover, retail prices have increased, making self-consumption more financially attractive

This means that the NET-FIT rate can be quite low and still prove economically attractive for customers

Solar PV Costs

Electricity retail prices in Australia: 1990 = 100

Source: ABS

https://www.abc.net.au/news/2015-03-25/fact-check-does-privatisation-increase-electricity-prices3f/6329316

At these rates, installing solar for own-use is good economics

Payback rates in Australia for a rooftop solar system range from 2-5 years

1 Australian Dollar (AUD) = USD \$0.72

https://theconversation.com/australian-household-electricity-prices-may-be-25-higher-than-official-reports-84681 https://www.choice.com.au/home-improvement/energy-saving/solar/articles/solar-panel-payback-times

ROI for pure solar PV system >20% For systems with storage between 9-12%

Systems in Australia are still more profitable without storage

But this could change as storage costs continue to decline

http://sunstainable.com.au/2018/04/17/australian-solar-roi/

Australia also offers location-specific NET-FITs

In Western Australia, different buy-back rates are offered depending on the location

Pricing is based on the utility's avoided cost of generation in that region

NET-FIT rates range from AUD \$0.07/kWh to \$0.50/kWh depending on location

This represents another policy option for NET-FIT design, effectively linking the NET-FIT rate to independent benchmarks

https://cabinet.gld.gov.au/documents/2016/Dec/SolRo/Attachments/Report.pdf

Victoria has introduced Time-Varying NET-FITs

Another innovative policy design found in Australia's NET-FIT policy is **Time-of-Use pricing** (TOU) for the net excess generation

The State of Victoria has recently introduced the following time-varying rates for the net excess generation;

	Weekdays	Weekends	NET-FIT Rate (in AUD \$/kWh)
Off-Peak	10PM – 7AM	10AM - 7AM	7.1 cents/kWh
Shoulder	7AM – 3PM, 9PM – 10PM	7AM-10PM	10.3 cents/kWh
On-Peak	3PM – 9PM	N/A	29.0 cents/kWh

https://www.solarchoice.net.au/blog/news/victoria-regulator-variable-feed-in-tariffs

Customers given a choice

Customers are provided with the choice:

- 1. Remain at a fixed, flat rate of 9.9 cents/kWh
- 2. Adopt TOU pricing at the rates agreed below

	Weekdays	Weekends	NET-FIT Rate (in AUD \$/kWh)
Off-Peak	10PM – 7AM	10AM - 7AM	7.1 cents/kWh
Shoulder	7AM – 3PM, 9PM – 10PM	7AM-10PM	10.3 cents/kWh
On-Peak	3PM – 9PM	N/A	29.0 cents/kWh

https://www.solarchoice.net.au/blog/news/victoria-regulator-variable-feed-in-tariffs

Rationale for Time-Varying NET-FITs

Aim of the policy is to **drive behavioral change** to reduce stress on the power system:

- Load-shifting (e.g. swimming pool pumps),
- Orient their solar PV panels to the west to generate more electricity later in the day
- Install battery storage, etc.

Utilities in Victoria are also looking at introducing "critical peak tariffs" that would potentially pay even more for NET-FIT generation

https://www.solarchoice.net.au/blog/news/victoria-regulator-variable-feed-in-tariffs

Residential and Commercial Customers Differ

Senegal adopted its own NET-FIT in Q4:2018

Quick Facts:

- Population: Approx. 15.85
 Million
- **Annual Generation**: 2.875 GWh (2016)
- Installed Capacity: Approx. 968
 MW (17% renewable, including
 100MW of solar PV)
- **Peak Demand**: 560MW
- Retail Electricity Tariffs:
 between USD \$0.15 0.23/kWh
 depending on consumption and
 customer class

NET-FIT in Senegal differentiated by customer class, technology, and voltage level

	Customer Class	NET-FIT (in FCFA)	NET-FIT (USD/kWh)
	Small Domestic	75	0.130/kWh
	Medium Domestic	70	0.121/kWh
≥	Large Domestic	60	0.104/kWh
Solar	Small Commercial	65	0.113/kWh
So	Medium Commercial	60	0.104/kWh
	Large Commercial	50	0.087/kWh
	Medium Voltage Customers	50	0.087/kWh

http://www.crse.sn/sites/default/files/2018-11/D%C3%A9cision%20n%C2%B02018-09.pdf

NET-FIT in Senegal also includes other nonsolar technologies

Biogas technologies also receive a minimum NET-FIT (USD \$0.087/kWh) along with a range of other renewable energy technologies that connect to the grid

A flat rate has been introduced for all medium-voltage customers

IRRs vary widely by customer class and project size, but range from 5-17% (most between 12-15%); as installed costs decline further, the IRRs will continue to improve

NET-FIT is critical to unlocking financing

http://www.crse.sn/sites/default/files/2018-11/D%C3%A9cision%20n%C2%B02018-09.pdf

NET-FITs: Advantages

- NET-FITs recognize that the cost of rooftop solar is increasingly below the retail price that customers pay: paying for this net excess generation (rather than simply compensating it) can therefore be a "win-win" for both utilities and customers
- NET-FITs are more bankable than either Net Metering or Net Billing: possibility of a cash payment provides a price floor for banks (a "worse case")
- NET-FIT rate can be differentiated by project size, location, and time of day if desired

NET-FIT: Advantages (con't)

- NET-FIT rate can be linked to independent benchmarks (e.g. wholesale market prices, utility avoided costs), removing the appearance of "subsidies"
- Fewer issues with cross-subsidization between customer classes
- Easier to adjust the compensation rate, since the NET-FIT rate is not linked to the retail price

NET-FITs: Challenges

- Under NET-FITs, customers may be unfairly/insufficiently compensated for their electricity: distributed generation may be worth <u>more</u> than the NET-FIT rate provided: this may encourage customers to "shop around" for a customer willing to pay more
- Administrative burden: issuing cash payments to customers for small sums (e.g. under USD \$50) to settle their net excess generation account may be costly if the processes are not sufficiently automated
- Potential tax issues, esp. for commercial customers

NET-FITs: Key Decision Points

- 1. How to determine the NET-FIT rate?
- 2. Is the rate a flat rate or is it differentiated by size, location, and/or time-of-day?
- 3. Which technologies are eligible?
- 4. Which customer types are eligible?
- 5. What are the project size categories?
- 6. Is there a cap on the total allowable capacity?
- 7. What is the length of the NET-FIT agreement?
- 8. Do existing projects qualify?
- 9. Are there any additional charges or fees?
- 10. Are any bill components "ring-fenced" (i.e. non-erasable through self-consumption)?

4. Concluding Remarks

Concluding Remarks

- Providing a cash payment for net excess generation represents a fundamental step forward for distributed solar policy, making it more bankable for a wider range of customers
- NET-FITs can help catalyze much needed investments in clean energy
- NET-FIT rate can be set below the retail rate, providing benefits both to the utility and to other customers

5. Further Reading

Further Reading

- Jacobs, D., Couture, T.D., Zinaman, O., Cochran, J., (2016). "RE-TRANSITION: Transitioning to Policy Frameworks for Cost-Competitive Renewables," IEA-RETD, Paris. Available at: http://iea-retd.org/wp-content/uploads/2016/03/IEA-RETD_RE-TRANSITION.pdf
- Rickerson, W., Koo, J., Crowe, J., Couture, T., (2016). "Tapping the Potential of Commercial Prosumers: Drivers and Policy Options," IEA-RETD, Paris. Available at: http://iea-retd.org/wp-content/uploads/2016/04/RE-COM-PROSUMERS-Report.pdf
- Zinaman et al. (2018). Distributed Generation Compensation Mechanisms (2018): https://www.nrel.gov/docs/fv18osti/68469.pdf
- https://gridworks.org/wp-content/uploads/2018/01/Gridworks SustainingSolar Online.pdf

Further Reading

- Couture, T., Jacobs, J., Rickerson, W., Healey, V., (2015). "The Next Generation of Renewable Electricity Policies: How Rapid Change is Breaking Down Conventional Policy Categories," Clean Energy Solutions Center, in collaboration with the National Renewable Energy Laboratory, Available at: http://www.nrel.gov/docs/fv15osti/63149.pdf
- Rickerson, W., Couture, T., Barbose, G., Jacobs, D., Parkinson, G., Belden, A., Becker-Birck, C., Chessin, E., (2014). "A Study on the Effects of a Large Uptake of Non-Incentivised Residential PV (RE-PROSUMERS)", IEA-RETD: Paris, France. Available at: http://iea-retd.org/wp-content/uploads/2014/06/RE-PROSUMERS_IEA-RETD_2014.pdf
- EU Study on Prosumers in the EU: https://ec.europa.eu/commission/sites/beta-political/files/study-residential-prosumers-energy-union_en.pdf

Thank you for your time!

ASSISTING COUNTRIES WITH CLEAN ENERGY POLICY

6. Knowledge Checkpoint: Multiple Choice Questions

