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Expert Trainer: Prof Oriol Gomis-Bellmunt

= Professor in the Electrical Power Department of Technical
University of Catalonia (UPC)

= Directive board member of the research group CITCEA-UPC,
where he leads the group of power systems dominated by
power electronics, including renewable energy (PV and wind),
HVDC transmission systems and other power converter based
systems (energy storage, EV chargers)

= 20+ years of experience in the fields of renewable energy, power
electronics and power systems. Involved in a number of research
projects and contracts of technology transfer to industry.

= Coauthor of 3 books, 7 patents and > 100 journal publications,
mainly in the field of power electronics in power systems and
grid integration of renewables.

= Supervision of 18 doctoral theses and >60 Bachelor and Master
theses.
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Introduction to Technical Integration of Solar PV

Smart grids and PV Integration

Solar PV Inverters

PV power plants layouts

Grid support to the grid from PV power plants - Grid codes
Power plant controllers

Planning - Distribution network with distributed PV

Planning - Transmission network with large scale PV power
plants

4. Technical
Integration of Solar

.
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Outline

» Topologies for PV power plants

* Panel / String / central inverters for PV
power plants

* Analysis of PV power plant layouts
 Auxiliary equipment for PV power plants
* Integration of energy storage
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Collection systems for PV power plants

 Collection in typically addressed with a medium
voltage AC network.

* The network can have a radial, ring or star
structure.

« DC collection is an alternative which is being
iInvestigated. It could provide some advantages,
but it requires more power electronics converters
to adapt the voltages. In this case, large DC-AC
iInverters at medium voltage would be needed to
iInterconnect with the main grid.
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Radial collection configuration

MV HV

o

GRID

A Cabrera doctoral thesis, UPC 2017
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Ring collection
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A Cabrera doctoral thesis, UPC 2017
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Star collection

MV HV

GRID
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Topologies

CENTRAL STRING MULTI-STRING
[ T 1 | ] L] ] [ ] NN o I e

T ] L e P
pc/| [pc/] [DC DC
pd |/Dq |/ Dg D
I [ [ [
X
gl +I ] +||| ’ +| T' | | - i-l |
DC pc/| |pc/][pc DC DC
A
Inverter topology P (kW) Vin mppt dc (V) Vout ac(V) t (Hz)
Central 100-1500 400-1000 270-400 50, 60
String 0.4-5 200-500 110-230 50, 60
Multistring 2-30 200-800 270-400 50, 60 )
Module Integrated ~ 0.06-0.4 20-100 110-230 50, 60 A Cabrera doctoral thesis, UPC 2017
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Analysis of PV power plants

Tracker / or group of strings
PV module \

N v F PV power plant
String :
converter g -—?—-
7]
Tracker .;- -
converter :
N T M
en .u! ces * Lu !
1]
String - -
Building block _i Building cee | BBy
converter Block (BB)

. Refers to DC/AC or DC/DC
converters potential location @

De Prada et al “Technical and Economic comparison of various electrical collection grid
configurations for large PV power plants” IET 2017
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PV1 Central inverter per tracker

Group of PV modules connected in
series forming strings which in turn
are connected in parallel, through
string diodes, to a central inverter per
tracker.

Key characteristics:

« power losses due to a centralized
MPPT,

« mismatch losses between the PV
modules

* losses in the stringdiodes || | |

» poor reliability since an Other
unscheduled inverter failure leads frackers
to the energy loss of a whole
tracker or array.

Building block

 low investment costs | Other building
¢ easy installation Power plant
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PV2 String inverters

String inverters are installed in the PV
plant.

Key characteristics:

* No losses associated with string
diodes

 Each inverter provides MPPT on a
string level (This is especially useful for
those cases where modules are
installed with different orientation or
have different specifications)

* |tincreases reliability in comparison
with PV1 since a failure of a string
inverter do not imply the loss of the
total PV power plant, but only a small
part.

* |t increases the cost and complexity
compared with the previous one.

oY N Ay _
Other
trackers
Building block
Other building
blocks...
Power plant
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PV3 Multi-string inverter

Several strings are interfaced with their
own DC/DC converters which are
connected to a common central inverter. 1 1 1 1 1 1

Key characteristics:

 Compared to PV1 it improves the
energy Yyield efficiency.

* nominal values, size or type of PV
modules as well as strings with = = = = = —

« Suitable to connect strings with
different orientations or different
degree of shadings. A A

e DC/DC converters increase the
voltages, so that both wiring

 costs and the costs associatedwith || =TT 00T

cable losses are reduced as well. oner
 [tincreases the investment costs on Building block

the converters compared with both

¢PV1andpbPV2,. 1

| Other building
blocks...
Power plant
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PV4 Central inverter per BB

One central inverter per
each building block.

Key characteristics:
« Complexity of
installation and

investment costs are
substantially decreased

 Energy yield efficiency
Is diminished

« Reliability losses of this
particular PV
configuration are higher
than in previous cases.

Building block

Other
trackers

Power plant

Other building
blocks...

s  — .
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PV5 Tracker DC-DC and BB inverter

1 | 1 1 1 1
1
T e
— Other
- trackers
Building block v
I Other building
blocks...
Power plant
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PV5 Tracker DC-DC and BB inverter

Combination between PV1 and PV4. Each tracker is connected to a
DC/DC converter which performs an MPPT control strategy similar to
the aforementioned central inverter of PV1 topology. Likewise, each
building block has installed one central inverter which connects the DC
outputs of all DC/DC converters and delivers the AC power to the point
of common coupling (PCC).

Key characteristics:

« Enhanced energy yield efficiency by reducing the MPPT losses in
comparison with PV4 configuration without increasing the investment
costs and the complexity of installation of the system.

* Inclusion of DC/DC converters allows to step up the voltage thus
reducing cable losses beyond the tracker's output.

« PV configuration presents similar drawbacks as PV1 topology in
terms of high mismatch losses between the PV modules and
significant MPPT losses within each tracker, as well as, alike
reliability losses as PV4 due to the lack of power of an entire building
block in case of failure of a single central inverter.
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PV6 String DC-DC and BB inverter

| | | | 1 |
— 1 Other
- n, trackers
Building block
| Other building
blocks...
Power plant

¥ SOLUTIONS CENTER C |TC EA e @ tm 5 '; CARBON

Alecnohmbiento

ASSISTING COLNTRIESWITH CLEAN EMERGY POLICY

TRUST



PV6 String DC-DC and BB inverter

Adapted combination between PV2 and PV4
concepts. Each string of each tracker is controlled by
a dedicated DC/DC converter which provides MPPT
control. All the string inverters are connected to a
common centralized inverter.

Key characteristics:

|t avoids losses associated with string diodes and
iIncreases the energy yield efficiency by decreasing
the mismatching losses and partial shading losses.

« Main drawback on its high cost and complexity of
installation due to the large number of electronic
devices required.
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Analysis (parametres)

Location NREL Golden, Colorado, USA
latitude, deq. 39.742 North

longitude, deq. 105.18 West

elevation, m 1828.8

time zone GMT-7

PV capacity, MWp 1 50 200
number of PY modules 4860 243,000 972,000
number of strings 243 12,150 48,600
number of trackers g 450 1800
number of BBs 1 50 200
module area, m-—r"' 7776 388,800 1,565 200
tilt angle, deq. 30

PV module technology Si-poly

lifetime, years 25

De Prada et al “Technical and Economic comparison of various electrical collection grid
configurations for large PV power plants” IET 2017
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Meteorological data applied

Sun azimuth versus elevation angles, for each hour of a whole
year. | |
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De Prada et al “Technical and Economic comparison of various electrical collection grid
configurations for large PV power plants” IET 2017

B S50 o crceA @ @ ko s T

oL hi CLEAN EN Alecnohmbiento 3 TRUST



Meteorological data applied

ye B GiobHor
24} T T T T T I [ ] Globlne
I Globline-Soiling Losses
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Horizontal and incident global irradiation considering soiling, IAM
factor and shading losses over a whole year.

De Prada et al “Technical and Economic comparison of various electrical collection grid
configurations for large PV power plants” IET 2017
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Performance ratio (PR)

« PR is defined as

PR — Egrid
Gincpnom
where
* E4iq Is the energy delivered to the grid considering all

the losses within the PV power plant
Ginc 1S the irradiation in the plane of array
Prom 1S the array efficiency

The difference is due to different losses:

» Soiling, Incidence angle modifier (IAM), Shading, PV
conversion , MPPT, Aging, Inverter, Cables,
Transformers, Reliability.
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Results - PR
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Technical and economic results obtained: PR calculated for all PV configurations and
capacities considered (1, 50 and 200 MWp)

De Prada et al “Technical and Economic comparison of various electrical collection grid
configurations for large PV power plants” [ET 2017
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Results - CAPEX

I .B' T T T T T T
1.6
- DC/DC converters
1.4
- Inverters
1.2 |:| Transformer
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% |:| PV modules
-
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0

Mounting structure

(0.6
Civil works

Preliminary works

0.4

j0AL

AC+DC cables

PV PV2 PY3 PV4 PV5 PVE
Breakdown of CAPEX per MW considering the scenario 2

De Prada et al “Technical and Economic comparison of various electrical collection grid
configurations for large PV power plants” IET 2017
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Results - LCOE

200 T , | : | :
I | MW PV Plant
1 50MW PV Plant
180 F | C_—_—__1200MW PV Plant |
O Scenario CCl1 v
O Scenario CC2
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LCOE computed for all PV plant configurations varying PV plant capacity
(1, 50 and 200 MWp) and component costs (CC1, CC2 and CC3)

De Prada et al “Technical and Economic comparison of various electrical collection grid
configurations for large PV power plants” IET 2017
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Results - LCOE

T I I T T
250 + I Rcliability High - Scenario R1 - .
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LCOE computed for all PV plant configurations varying
components reliability (R1, R2 and R3)
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Equipment for PV power plants

* |n addition to PV panels and inverters, PV power
plants require the following equipment:

— Interconnection cables and lines
« DC strings
« AC Grid connection
— Grid connection equipment
* Protection equipment
 Electrical switchgear
» Power Transformers
« Reactive power compensation equipment

— Energy storage systems (when needed)

Source: Skytron
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Cost distribution

Overview of (2015) total system cost for ground-mounted PV systems

Total: ~1000 €7/kWp

350 ~340 €/kWp

300
p— Balance of System cost

ﬁ Infrastructure
250

[
200 [ Grid connection
150 D cabling
Module and inverter
- ~ G660 EUR/EWp
[world market] 100 _
B Installation
S0
B Mounting
— ]

Current and Future Cost of Photovoltaics, Fraunhofer ISE
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Stand-alone PV power plants

o PV generator e Possible DC loads

9 Switchboards on DC side e DC/AC static converter (inverter)
9 Load regulator o AC loads
o Storage system (battery) = [C connections

— AC connections
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Grid connected PV power plants

o PV generator
© switchboards on DC side

0 DC/AC static converter (inverter)

O switchboard on AC side —— DC connections
© oistributor network —— AC connections
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Large PV power plants

[EEE 12 BUS SYSTEM/

PREPA POWER SYSTEM
CENTRAL INVERTER STATION LAYOUT
" 1 MW PV CENTRAL
Ay INVERTER PVPP
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i
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_ e .F > |
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Energinet.dk ForskEl project no.10648
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Transformers and switchgear

* Low to medium voltage AC Transformers
for each inverter (or pair of inverters)

 Single or double feeder configuration

MV TRANSFORMER MV SWITCHGEAR
Dy 11 -
400Vac-690Vac /11kV-34.5kV [ 1 |

To inverter - ik i +
o—s (D]
S + 40

To inverter

O—#£

MV TRANSFORMER
Dy 11
400Vac-690Vac /11kV-34.5kV
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Reactive power

« Additional reactive power provision can be needed in
some projects.

|t can be provided with:
— Capacitor banks, if there are no dynamic requirements.

— SVC (static VAR compensator), if the reactive power needs to be
adjusted dynamically.

— STATCOM (static synchronous compensator), if reactive power
needs to be adjusted dynamically and reactive current needs to
be ensured also in fault conditions.

* In some applications we can use capacitor banks for the
bulk reactive power provision and a STATCOM for the
regulation.
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Energy storage systems - General
description

Electrical
\L Energy storage \l/
— Mechanical ] EIectrg | EIect'ro
magnetic chemical
——> Pumped-Hydro ——> Supercapacitor ——>  Hydrogen
———> Compressed Air —> SMES Flow batteries
S Flywheel —>  Vanadium-Redox
—> Zinc-Bromide
———> Polysulphide-Bromine
: Batteries
Time scale: Long Term (hours — days)
Time scale: Medium term (min — hours) > Lead-Acid
Time scale: Short term (s — min) ; Ni-Cd
—> Li-lon
—> NaS

Francisco Diaz, CITCEA-UPC
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Energy storage systems - General description
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Source: F. Diaz-Gonzalez, A. Sumper, O. Gomis-Bellmunt, R. Villafafila-Robles. A review of energy
storage technologies for wind power applications. Renewable and Sustainable Energy Reviews 2012(16)
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Energy storage systems - General description

Flow batteries

Lithium-based batteries

Molten salt %Flywhﬁ‘ﬂ (low speed)

Supercapacitor

Flywheel (high speed)

Superconducting magnetic
energy storage (SMES)

=

=

-

g Ice storage Sodium-sulphur (Na5) batteries

[=]

£ Adiabatic CAES

-"-'; Compressed air energy storage (CAES)
E Synthetic natural gas Fr{:a sidential 1:hh[:-'c water

E eaters with storage \J\ ihdercrtind thersal
?r Thermochamical energy storage (UTES)
g Cold water storage*

" ‘)\ Pit storage
a

o ]

@]

Pumped Storage Hydropower (PSH

v

Research and development Demonstration and deployment Commercialisation

Current maturity level
& Electricity storage W' Thermal storage

Source: Decourt, B. and R. Debarre (2013), “Electricity storage”, Foctbook, Schiumberger Business Consulting Energy Institute, Paris, France and Paksoy, H. (2013),
“Thermal Energy Storage Today” presented at the IEA Energy Storage Technology Roadmap Stakeholder Engagement Workshop, Paris, France, 14 February.
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Energy storage systems - Applications
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Source: F. Diaz-Gonzalez, A. Sumper, O. Gomis-Bellmunt, R. Villafafila-Robles. A review of energy storage
technologies for wind power applications. Renewable and Sustainable Energy Reviews 2012(16)
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Energy storage systems — Number of
research projects worldwide

Research focuses on the application of energy storages for the grid integration of

renewables.

Power quality

Voltage control

Black start

Ramping limitation

Primary frequency control

Secondary frequency control
Self-consumption

Tertiary frequency control

Support to trans. and distr. Infrastuctures
Renewables integration

Energy supply

Data: DOE Global Energy Storage Database, http://www.energystorageexchange.org/

0 100 200 300 400 500 600

Francisco Diaz, CITCEA-UPC
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Energy storage systems — projects
worldwide

The intense research activities should favor a dramatic cost reduction of lithium-ion
batteries in a short term, thus favoring a generalized deployment of this technology in the
electrical power system and the electro mobility fields.

The European Commission (and other organizations such as EASE and EERA) proposed
in their technology roadmaps the objective of decreasing by a factor of 5 the current cost
of lithium-ion batteries by 2030.

Lead-acid,: 140 Nickel g \ FIywheeI
i

‘/ Supercapautor;
Sodiu
122M

|F|ux 101

Compressed air: 21

Data: DOE Global Energy Storage Database, http://www.energystorageexchange.org/ Francisco Diaz, CITCEA-UPC
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Energy storage systems — expected dramatic

cost reduction
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Energy storage systems — Business models.
Vision

Costs Benefits Frequency Int. electric  Voltage Load T&D
regulation vehicles control following infrastuctures

Francisco Diaz, CITCEA-UPC
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Summary

* Collection systems for PV power plants can be
Implemented with radial, ring or star systems.

* PV power plant collection is typically designed at
medium voltage.

« There are a number of possible topologies for
arranging the power inverters, including central,
string and multi-string.

« Additional equipment is needed: transformers,
switchgear and in some cases reactive power
equipment and energy storage systems.
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Thanks for your attention!
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