ASSISTING COUNTRIES WITH CLEAN ENERGY POLICY

An Initiative of the Clean Energy Ministerial

International Solar Alliance Expert Training Course

Ensuring quality in off-grid rural electrification projects

In partnership with the Clean Energy Solutions Center (CESC) Jorge Ortiz González - November 2019

Supporters of this Expert Training Series

An Initiative of the Clean Energy Ministerial

Expert Trainer: Jorge Ortiz González

Brief Profile:

- Solar mini-grid engineer at Trama Tecnoambiental, an international consulting and engineering company specialized in distributed generation through renewable energies in rural contexts.
- Previous experience as a solar PV engineer in commercial and utility-scale applications in The Netherlands.
- 7+ years of experience in solar PV energy, including Silicon cell research, PV panel manufacturing and PV system design and installation.

Overview of Training Course Modules

This Training is part of Module 7, and focuses on the issue of quality assurance in off-grid solar projects

Quality Assurance

IEC

- TC 82 (PV), JWG 1 (off-grid PV)
- Specific standards for each component
- Lighting Global
 - Standards for PicoPV and SHS products
 - IEC TS 62257-9-5:2018
- NREL/Global LEAP
 - QAF for mini-grids

ecnoAmbien

LIGHTIN

Index

- Phase 1: Design
- Phase 2: Component selection
- Phase 3: Logistics
- Phase 4: Installation
- Phase 5: Commissioning
- Phase 6: Training
- Phase 7: Operation and Maintenance

Phase 1 DESIGN

Phase 1	Phase 2	Phase 3	Phase 4	Phase 5	Phase 6	Phase 7
Design	Component Sel.	Logistics	Installation	Commissioning	Training	O&M
Sizing						

Software-based sizing process

- RE resource
- Other inputs

ENERGY

Phase 1	Phase 2	Phase 3	Phase 4	Phase 5	Phase 6	Phase 7
Design	Component Sel.	Logistics	Installation	Commissioning	Training	O&M
.						

Sizing

Optimization objective

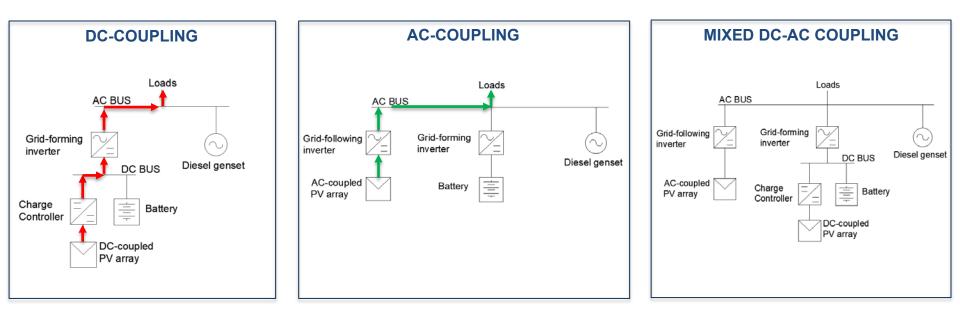
Critical to avoid under- or over-sizing the plants, resulting in mismatch between demand and generation

Examples:

- 1. Economic indicators:
 - Minimize LCOE
 - Minimize CAPEX
 - Minimize OPEX
- 2. Technical indicators:
 - Maximize resilience
 - Maximize autonomy
 - Maximize RE fraction
- 3. Environmental indicators:
 - Minimize CO2 emissions

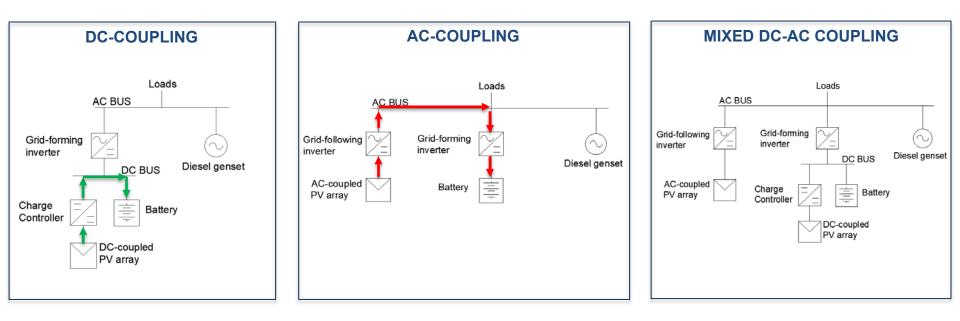
What can it depend on?

- 1. Financing mechanisms
- 2. Tariffs
- 3. Other regulations
- 4. Demand uncertainty
- 5. Location



Phase 1	Phase 2	Phase 3	Phase 4	Phase 5	Phase 6	Phase 7
Design	Component Sel.	Logistics	Installation	Commissioning	Training	O&M

Electrical architecture


- When selecting the electrical architecture, consider:
 - □ Load profile
 - Costs
 - Reliability and robustness

Phase 1	Phase 2	Phase 3	Phase 4	Phase 5	Phase 6	Phase 7
Design	Component Sel.	Logistics	Installation	Commissioning	Training	O&M

Electrical architecture

- When selecting the electrical architecture, consider:
 - □ Load profile
 - Costs
 - Reliability and robustness

Phase 2 COMPONENT SELECTION

Phase 1	Phase 2	Phase 3	Phase 4	Phase 5	Phase 6	Phase 7
Design	Component Sel.	Logistics	Installation	Commissioning	Training	O&M

PV modules

- Normative references:
 - □ IEC 61215
 - □ IEC 61730-1, IEC 61730-2
 - IEC 61701 and IEC 62716 depending on the environment
- Suggested best practices:
 - Crystalline silicon-based PV modules (poly-Si and mono-Si) are the most mature technology nowadays in terms of reliability and cost per Wp.
 - All the PV modules within the same string must be of the same brand, model and production lot, having the same electrical characteristics (Pmp, Isc, Imp, Voc, Vmp).
 - □ Positive tolerance preferred, together with an efficiency >15%

Phase 1	Phase 2	Phase 3	Phase 4	Phase 5	Phase 6	Phase 7
Design	Component Sel.	Logistics	Installation	Commissioning	Training	O&M

Batteries

Normative references:

- □ IEC 61427
- Lithium: IEC 62619, IEC 62133-2, IEC 61960, UN38.3

Suggested best practices:

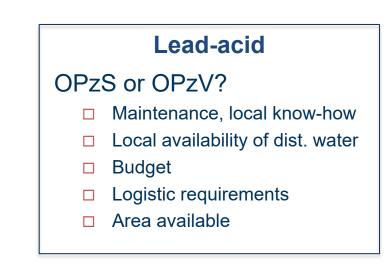
- High charging and discharging efficiency
- □ Resistance in cycling (>1500 cycles up to SoC ≈ 20%)
- □ Minimum self-discharge (<4%/month)
- Consider influence of temperature
- □ Max 3 batteries in parallel

Lead-acid or Li?

- Budget
- □ Temperature
- Recyclability
- □ # of cycles
- Energy density (per kg or per m3)
- □ Efficiency

cnoAmbien

Phase 1	Phase 2	Phase 3	Phase 4	Phase 5	Phase 6	Phase 7
Design	Component Sel.	Logistics	Installation	Commissioning	Training	O&M

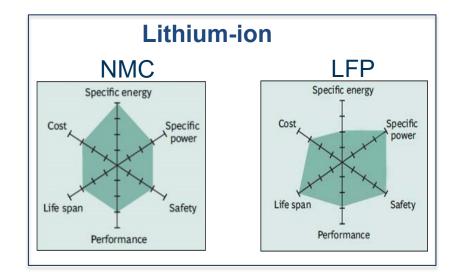

Batteries

Normative references:

- □ IEC 61427
- Lithium: IEC 62619, IEC 62133-2, IEC 61960, UN38.3

Suggested best practices:

- High charging and discharging efficiency
- □ Resistance in cycling (>1500 cycles up to SoC ≈ 20%)
- Minimum self-discharge (<4%/month)</p>
- Consider influence of temperature
- □ Max 3 batteries in parallel


ecnoAmbien

Phase 1	Phase 2	Phase 3	Phase 4	Phase 5	Phase 6	Phase 7
Design	Component Sel.	Logistics	Installation	Commissioning	Training	O&M

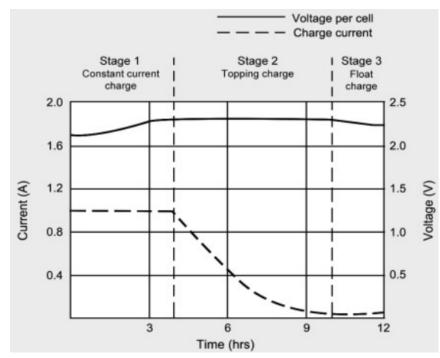
Batteries

Normative references:

- □ IEC 61427
- Lithium: IEC 62619, IEC 62133, IEC 61960, UN38.3
- Suggested best practices:
 - High charging and discharging efficiency
 - □ Resistance in cycling (>1500 cycles up to SoC ≈ 20%)
 - □ Minimum self-discharge (<4%/month)
 - Consider influence of temperature
 - □ Max 3 batteries in parallel

Batteryuniversity.com

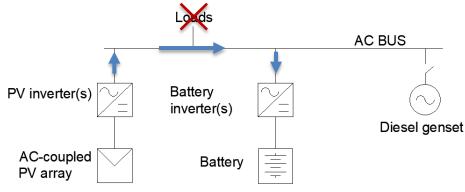
lecnoAmbien



Phase 1	Phase 2	Phase 3	Phase 4	Phase 5	Phase 6	Phase 7
Design	Component Sel.	Logistics	Installation	Commissioning	Training	O&M

Charge controller

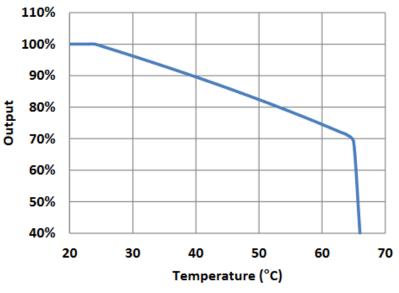
- Normative references:
 IEC 62109, IEC 62509
 - UL1741
- Suggested best practices:
 - For minigrid-sized systems, use MPPT controllers
 - Regulation phases according to battery technology
 - Temperature-dependent charging thresholds
 - SoC embedded calculation with temperature compensation


Batteryuniversity.com

Phase 1	Phase 2	Phase 3	Phase 4	Phase 5	Phase 6	Phase 7
Design	Component Sel.	Logistics	Installation	Commissioning	Training	O&M

PV inverters

- Normative references:
 - □ IEC 62109, IEC 62477
- Suggested best practices:
 - String inverters with MPP tracking
 - Ask for temperature derating curve
 - Ensure compatibility with battery inverter (communication, control)
 - □ kWp/kWac > 1
 - Ensure that the ratio between the PV inverter power and battery inverter power is within manufacturer's limits


Phase 1	Phase 2	Phase 3	Phase 4	Phase 5	Phase 6	Phase 7
Design	Component Sel	Logistics	Installation	Commissioning	Training	O&M

Battery inverters

Normative references:
 IEC 62109, IEC 61000

Suggested best practices:

- Ask for temperature derating curve
- □ Note overload capability (30min, 5min)
- Active power regulation
- Compatible communication bus with all other components
- □ Modularity
- Keep in mind the reliability of the existing grid

Power vs temperature

Derating curve of Victron Quattro

Phase 1	Phase 2	Phase 3	Phase 4	Phase 5	Phase 6	Phase 7
Design	Component Sel.	Logistics	Installation	Commissioning	Training	O&M

Typical warranties

Component	Warranty (years)
PV modules	10 (product), 25 (performance)
Charge controller	5
PV inverter	5
Battery inverter	2-5
Battery	1-2 (Pb), 5-10 (Li)

Phase 3 LOGISTICS

Phase 1	Phase 2	Phase 3	Phase 4	Phase 5	Phase 6	Phase 7
Design	Component Sel.	Logistics	Installation	Commissioning	Training	O&M
Proces	SS					

- Inspection of goods
- Certifications by independent party
- Container optimization
- Transport insurances
- Shipping documents
- Custom release
- Inland transport to remote locations.

Phase 1	Phase 2	Phase 3	Phase 4	Phase 5	Phase 6	Phase 7
Design	Component Sel.	Logistics	Installation	Commissioning	Training	O&M

Transport

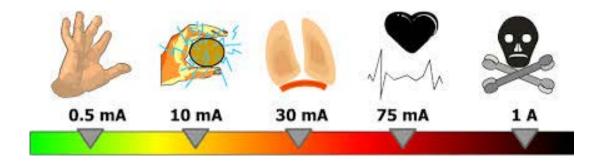
Source: Trama Tecnoambiental

Phase 4 INSTALLATION

Phase 1	Phase 2	Phase 3	Phase 4	Phase 5	Phase 6	Phase 7
Design	Component Sel.	Logistics	Installation	Commissioning	Training	O&M

General

Consider added value options



Phase 1	Phase 2	Phase 3	Phase 4	Phase 5	Phase 6	Phase 7
Design	Component Sel.	Logistics	Installation	Commissioning	Training	O&M

Protection of people

IEC ELV (Extra Low Voltage) definition: AC: 50V DC: 120V

Phase 1	Phase 2	Phase 3	Phase 4	Phase 5	Phase 6	Phase 7
Design	Component Sel.	Logistics	Installation	Commissioning	Training	O&M

Best practices

- Follow international standards to ensure safety of personnel and components, inter alia:
 - IEC 60364, Low-voltage electrical installations. Part 7-712 deals with PV systems.
 - IEC 61557, Electrical safety in low voltage distribution systems up to 1000 Vac and 1500 Vdc.
 - □ IEC 62548, PV arrays design requirements.
 - IEC 62485 safety requirements for secondary batteries and battery installations
- Consider local environment (high temperatures, corrosion, rainy seasons, hurricanes..)
- Ensure proper ventilation if OPzS batteries are used.

Phase 5 COMMISSIONING

Phase 1	Phase 2	Phase 3	Phase 4	Phase 5	Phase 6	Phase 7
Design	Component Sel.	Logistics	Installation	Commissioning	Training	O&M
Ohiod						

Objectives

- Check the process to ensure that the system installation meets the requirements set forth in the implementation contract between the developer and the implementer
- Test the process to ensure that the system operates according to the functional part of the implementation contract
- Once the parties come to agreement, transfer the responsibility of the system

Relevant standards:

- IEC 62446-1. Photovoltaic (PV) systems Requirements for testing, documentation and maintenance - Part 1: Grid connected systems - Documentation, commissioning tests and inspection
- □ **IEC TS 62257-6**. Recommendations for renewable energy and hybrid systems for rural electrification Part 6: Acceptance, operation, maintenance and replacement

Phase 1	Phase 2	Phase 3	Phase 4	Phase 5	Phase 6	Phase 7
Design	Component Sel.	Logistics	Installation	Commissioning	Training	O&M
Steps						

	Step	Description
0	Preparation	Check that all non-operational contractual requirements are met: Documentation, manuals, spare parts, drawings, procedures, warranty contracts, etc.
1	Evaluation of the conformity of the installed system with the accepted design	Check that the equipment complies to the contractual accepted design and that any differences are explained
2	Evaluation of qualification of the installation	Check that the system is ready to be operated
3	Preliminary tests	Test that the system components operate correctly
4	Performance testing	Check all the operating performance parameters of the whole system
5	Agreement	Transfer of responsibility

Phase 1 Design	Phase 2 Component Sel.	Phase 3 Logistics	Phase Installa		Phase 5 Commissior	ning		ase 6 aining		Phas O&	
					м	odel PV	array tes	t report			
Comm	issioni	ng rep	orts		PV array	test r	eport			Initial veri Periodic v	
				Installation addr	888				Reference	50	
									Date		
				Description of w	ork under test	_			Inspecto	r	
									Test inst	ruments	
						-		Т		1	
Code-	-compliant te	est descripti	ons	String		1	2	3	4		n
	, xample repo	· · · · ·		Array	Module						
anue	zample repu	ILS CALL DE		Anay	Quantity		-				
found	in:			Array parameters (as specified)	Voc (stc)						
Iounu					lsc (stc)						
	C 60116 1			String	Туре		-		_	-	
	C 62446-1			over-current protective	Rating (A)	-	-			-	
		7.4~		device	DC rating (V) Capacity (kA)		-				
	C TS 62257-7			-	Туре		-				
				Wiring	Phase (mm²)	-					
IE	C TS 62257-	10			Earth (mm ²)						
				String test	Voc (V)						
				String teat	lsc (A)						
					Irradiance	ļ	_				
				Polarity check			-	-			
				Array insulation resistance	Test voltage (V) Pos – Earth (ΜΩ)			-			
4					rus - carus (MU)					-	

(MQ) (MΩ)

Neg - Earth

Earth continuity (where fitted) Switchgear functioning correctly Inverter make / model Inverter serial number Inverter functions correctly Loss of mains test

Phase 6 TRAINING

Phase 1	Phase 2	Phase 3	Phase 4	Phase 5	Phase 6	Phase 7
Design	Component Sel.	Logistics	Installation	Commissioning	Training	O&M

Community involvement and training

- Critical step in order to ensure long-term project sustainability
- Continuous process

Phase 1	Phase 2	Phase 3	Phase 4	Phase 5	Phase 6	Phase 7
Design	Component Sel.	Logistics	Installation	Commissioning	Training	O&M

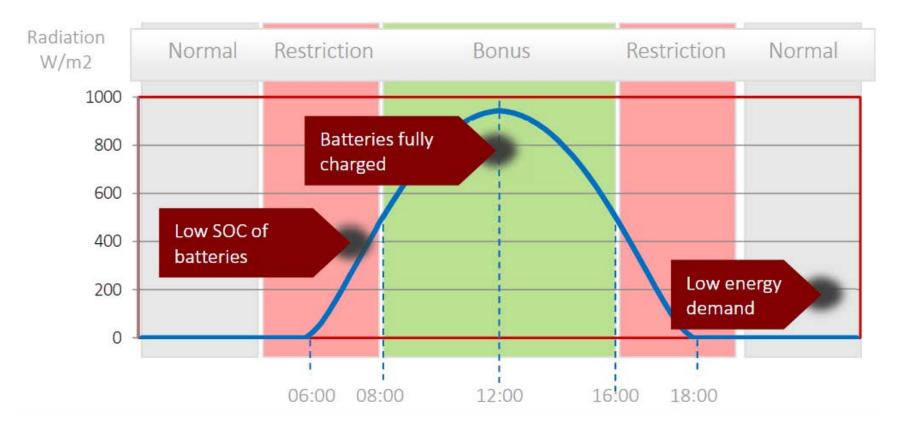
Consumer education

Financial obligations:

- Written policy concerning the disconnection of consumers in case of non-payment shall be clearly defined
- Safety
- Efficient use of energy

Combine with women empowerment

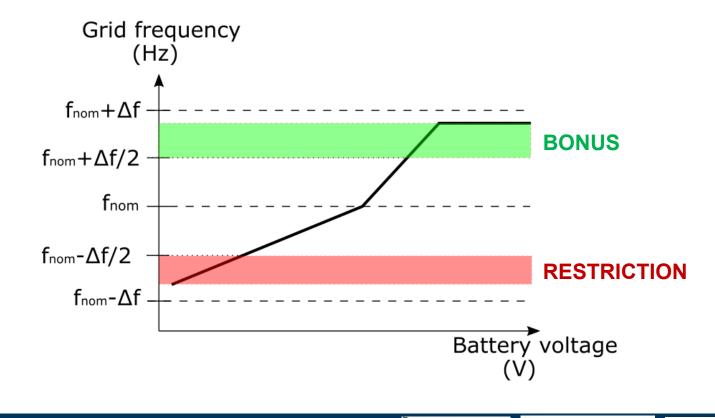
barefoot college



Phase 1	Phase 2	Phase 3	Phase 4	Phase 5	Phase 6	Phase 7
Design	Component Sel.	Logistics	Installation	Commissioning	Training	O&M

Demand-side management

 Give incentives to users to shift their demand to follow energy production times


35

Phase 1	Phase 2	Phase 3	Phase 4	Phase 5	Phase 6	Phase 7
Design	Component Sel.	Logistics	Installation	Commissioning	Training	O&M

Demand-side management

Real-time communication by detecting frequency changes:

- Smart meters can detect the mini-grid's frequency
- □ A price signal can be transmitted by modifying the frequency of the inverter

NATIONA

Phase 7

M&**O**

Phase 1	Phase 2	Phase 3	Phase 4	Phase 5	Phase 6	Phase 7
Design	Component Sel.	Logistics	Installation	Commissioning	Training	O&M

Objectives

Operation:

- □ Manage and monitor
- □ Respond to abnormal system operation (corrective actions, troubleshooting)
- □ Guarantee safety
- Perform analysis

Maintenance:

- Preventive maintenance
- Corrective maintenance
- Conduct periodic tests and inspections

PREVENTIVE

CORRECTIVE

References

Phase 1

Design

 IEC TS 62257-6: maintenance and replacement recommendations for small renewable energy and hybrid systems for rural electrification

Phase 2

Component Sel.

Phase 3

Logistics

- IEC 62446-2: maintenance of PV systems
- IEC 61724: PV system performance monitoring and evaluation
- NREL QAF for minigrids:
 - □ Levels of service framework
 - Accountability and performance reporting framework

Phase 4 Installation	Phase 5 Commissioning		Phase 6 Training	Phase 7 O&M	
		Table ES-1. Summa	ry of Level of Service		
Issue		Base Level of Service	Standard Level of Service	High Level of Service	
		AC Power Qua	lity Phenomena	*	
Voltage imbalance		<10%	<5%	<2%	
Transients		No protection	Surge protection	Surge protection	
Short voltage duratio variations	n	<5/day	<1/day	<1/week	
Long voltage duration variations	n	<10/day	<5/day	<1/day	
Frequency variations		48 Hz < f <52 Hz	49 Hz < f <51 Hz	49.5 Hz < f <50.5 Hz	
		DC Power Qua	lity Phenomena		
Resistive voltage dro	p	<10%	<5%	<2%	
Percent ripple	Percent ripple		20% pk-pk	10% pk-pk	
DC ripple & switching noise	DC ripple & switching noise		Transient noise minimized	Ripple noise also minimized	
Transients		No protection	Surge protection	Surge protection	
Faults allowed per da	ау	<5 per day	<2 per day	<1/day	
		Power F	Reliability		
Unplanned-SAIFI _{xx} ⁽¹	,3)	<52 per year	<12 per year	<2 per year	
Unplanned-SAIDI _{xx}		<876 hours (90% reliability)	<438 hours (95% reliability)	<1.5 hours (99.99% reliability	
Planned-SAIFI _{XX} ^(1,2)		No requirement but should be defined	No requirement but should be defined	<2 per year	
Planned-SAIDI _{XX} ^(1,2)		No requirement but should be defined	No requirement but should be defined	<30 minutes - 100% reliability	

Quality Assurance Framework for Mini-Grids, NREL, 2016.

a Tecno Ambiental

INTERNATIONAL SOLAR ALLIANCE

CARBON

TRUST

Phase 1	Phase 2	Phase 3	Phase 4	Phase 5	Phase 6	Phase 7
Design	Component Sel.	Logistics	Installation	Commissioning	Training	O&M

(some) Possible issues

Phase 1Phase 2Phase 3Phase 4Phase 5Phase 6DesignComponent Sel.LogisticsInstallationCommissioningTraining	Phase 7 O&M
--	----------------

CONSTANT TASKS:

ТҮРЕ	LEVEL O&M	DESCRIPTION
0 - General	Basic	Existence and availability of O&M checklist
0 - General	Basic	Existence and availability of O&M plan
0 - General	Basic	Availability and update of O&M logbooks
0 - General	Professional	Existence and availability of "as-built" plans
0 - General	Professional	Existence and availability of technical documentation
0 - General	Professional	Existence and availability of operation manuals
0 - General	Professional	Existence and availability of monitoring and evaluation plan
0 - General	Professional	Availability and update of monitoring and evaluation reports
0 - General	Basic	Access to PV panels, battery rooms and technical room is restricted and only authorized personnel is allowed

Phase 1Phase 2Phase 3Phase 4Phase 5Phase 6Phase 7DesignComponent Sel.LogisticsInstallationCommissioningTrainingO&M			Phase 4 Installation	Phase 3 Logistics	Phase 2 Component Sel.	Phase 1 Design
--	--	--	-------------------------	----------------------	---------------------------	-------------------

MONTHLY TASKS:

ТҮРЕ	LEVEL O&M	DESCRIPTION
2 - Batteries	Basic	Visual check of battery conditions - presence of sediments and crystals, electrolyte level, presence of corrosion, tight and protected connections
2 - Batteries	Basic	Availability check for the hydrometer, gloves, glasses, distilled water, thermometer
2 - Batteries	Basic	Check battery voltage
3 – Charge controller and data logger	Basic	Check that the performance parameters agree with the system specifications. Log the basic parameters in the logbook.
3 – Charge controller and data logger	Consultant Supervisor	Check that the operational parameters agree with the system specifications. Log the operational parameters in the logbook.
6 – Technical room	Basic	Check for good ventilation, restricted area and availability of safety equipment (fire extinguisher, danger signs)

SOLAR

Phase 1	Phase 2	Phase 3	Phase 4	Phase 5	Phase 6	Phase 7
Design	Component Sel.	Logistics	Installation	Commissioning	Training	O&M

QUARTERLY TASKS:

ТҮРЕ	LEVEL O&M	DESCRIPTION
1 – PV generator	Basic	Cleaning of possible dirt in the PV modules.
1 - PV generator	Basic	Visual check of color defects, hotspots and cracks in the PV modules.
1 - PV generator	Basic	Check the coating around the fixing points of the mounting structure.
1 - PV generator	Basic	Visual check of all fixing screws, tightening, corrosion, etc.
1 - PV generator	Basic	Check radiation and temperature sensors (tightening, contact, wiring).
1 - PV generator	Basic	Visual check of the cables.
2 - Batteries	Basic	Check the density and voltage of each battery cell, fill with distilled water
3 – Charge controller and data logger	Supervisor	Download recorded data, check raw data for possible errors.
	1	

ALLIANCE

CARBON

TRUST

Phase 1	Phase 2	Phase 3	Phase 4	Phase 5	Phase 6	Phase 7
Design	Component Sel.	Logistics	Installation	Commissioning	Training	O&M

SEMESTER TASKS:

ТҮРЕ	LEVEL O&M	DESCRIPTION
1 – PV generator	Basic	Prevention of possible plant growth that could provoke shades.
1 - PV generator	Professional	Check PV modules and wiring
2 - Batteries	Professional	Check cables and terminals (including earth), tightening, dust, etc
3 - Charge Controller and data logger	Supervisor	Data analysis and preparation of evaluation reports. Conclusions and recommendations on basic operational parameters.
4 - Inverter	Professional	Check the inverter status: operation, screen, alarms, modes, etc.
5 - DC distribution and protections	Professional	Check the condition of the cables and terminals, including earth: clamping, dust, etc.
5 - DC distribution and protections	Professional	Check combiner box – switches, cables, terminals, etc.
7 - AC connection to Grid	Professional	Check combiner box – switches, cables, terminals, etc.

Phase 1	Phase 2	Phase 3	Phase 4	Phase 5	Phase 6	Phase 7
Design	Component Sel.	Logistics	Installation	Commissioning	Training	O&M

YEARLY TASKS:

ТҮРЕ	LEVEL O&M	DESCRIPTION
0 - General	Professional	General check of all the elements and operational conditions.
1 – PV Generator	Basic	Visual check of the shades on the PV modules during the day.

Thanks for your attention!

ASSISTING COUNTRIES WITH CLEAN ENERGY POLICY

