

International Solar Alliance Expert Training Course

In partnership with the Clean Energy Solutions Center (CESC)

Dr. David Jacobs

Session 27: System Integration of Solar PV

In partnership with the Clean Energy Solutions Center (CESC)

Dr. David Jacobs

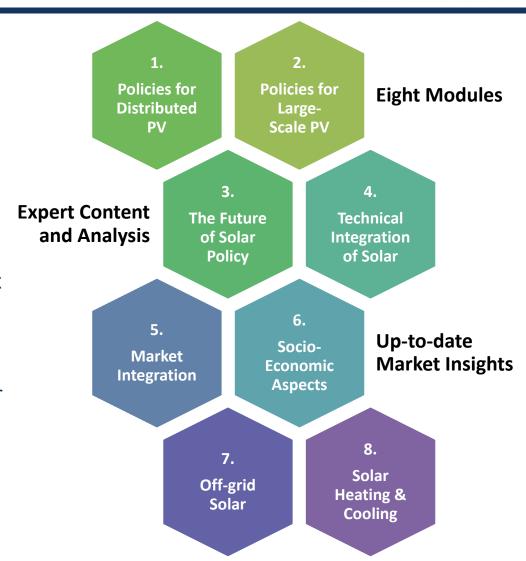
Supporters of this Expert Training Series

An Initiative of the Clean Energy Ministerial

IET – International Energy Transition GmbH

Dr. David Jacobs

- Founder and director of IET
- Focus on sustainable energy policy and market design
- 14+ years experience in renewable energy policies
- 60+ publications on energy and climate
- 40+ countries work experience (consulting and presentations)


Training Course Material

This Training is part of Module 5, and focuses on maket integration

Related training units are:

- ✓ 28. PV integration and the merit order effect
- √ 30. Solar PV and the Role of Storage
- √ 31. Sector coupling: Using solar power for the heating/cooling and transport sector

Overview of the Training Session

- 1. Introduction: Learning Objective
- Understanding features of solar PV and its impact on power systems
- Understanding flexibility options to integrate PV in modern power systems
- 4. Further Reading
- 5. Knowledge Check: Multiple-Choice Questions

Introduction:

Learning Objective

Learning Objective

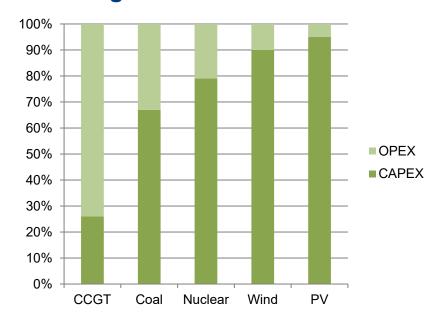
- Understand the benefits of solar PV to the electricity system
- Understand the decisive features of solar PV (and its impact on electricity systems)
- Understand options to make the electricity system more flexible in order to integrate solar PV

Features of Solar PV and the Impact on Electricity Systems

Benefits of solar PV deployment for the electricity system

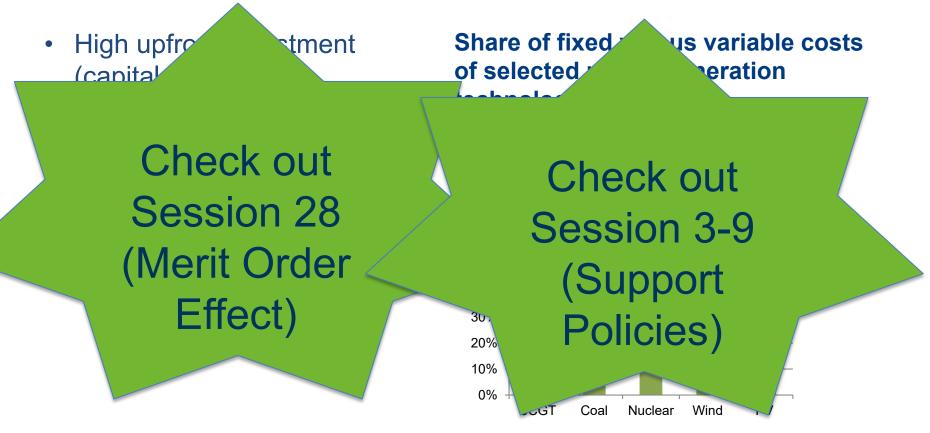
- Fuel cost savings
- Reduced short-run marginal system costs and reduced wholesale market prices (merit-order effect)
- Displacement of most expensive generation (merit-order effect)
- Reduced emissions

- 1. low short-run cost
- 2. Variability
- 3. Uncertain
- 4. Locational variations

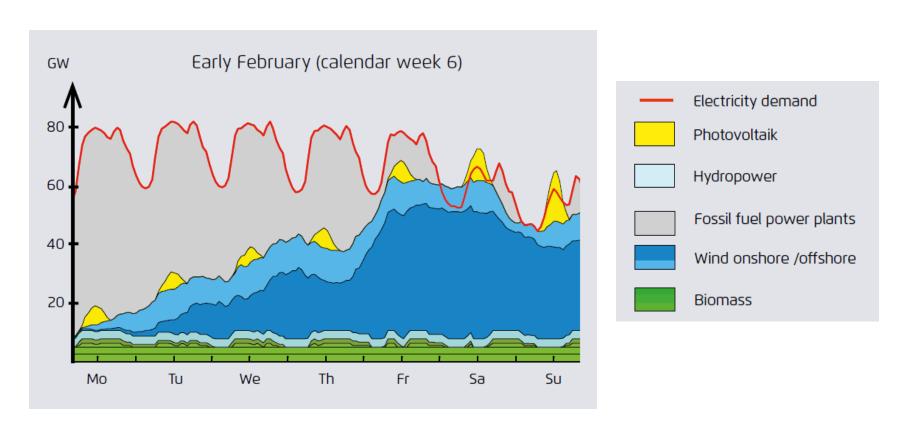


- 1. low short-run cost = finance mechanism/support mechanism
- 2. Variability = market and system design
- 3. Uncertain = market and system design
- 4. Locational variations = grid expansion planning

- 1. low short-run cost, i.e. once solar PV is installed it can generate power at very little cost (zero marginal costs)
 - High upfront investment (capital costs)


Share of fixed versus variable costs of selected power generation technologies

1. low short-run cost, i.e. once solar PV is installed it can generate power at very little cost (zero marginal costs)

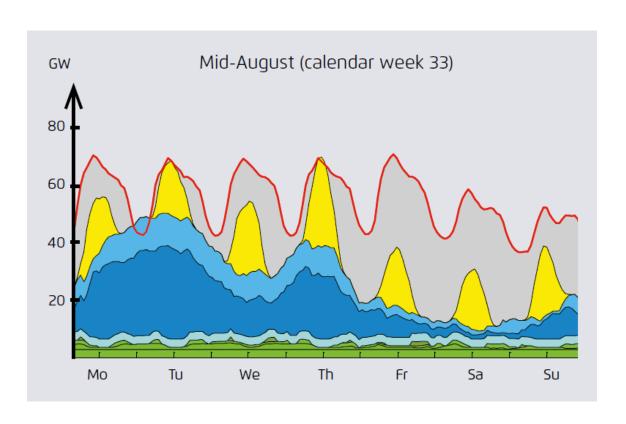


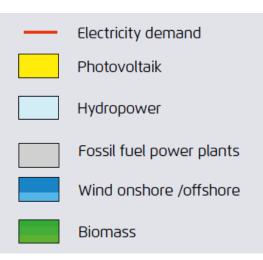
- 1. low short-run cost = finance mechanism/support mechanism
- 2. Variability = market and system design
- 3. Uncertain = market and system design
- 4. Locational variations = grid expansion planning

Many electricity markets will be determined by wind and solar PV

Electricity demand and renewable power generation in 2022

Source: Agora Energiewende 2012

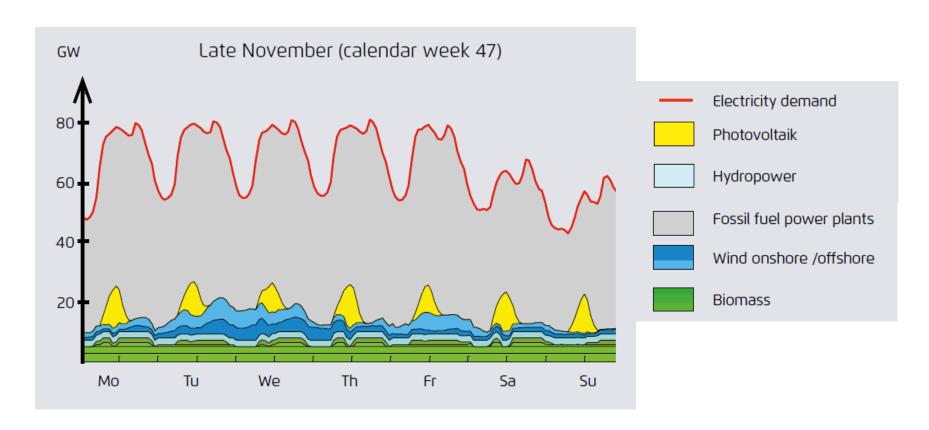




Many electricity markets will be determined by wind and solar PV

Electricity demand and renewable power generation in 2022

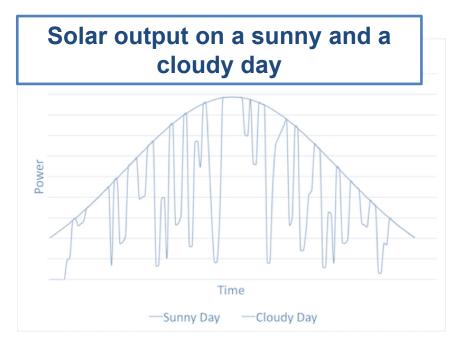
Source: Agora Energiewende 2012



Many electricity markets will be determined by wind and solar PV

Electricity demand and renewable power generation in 2022

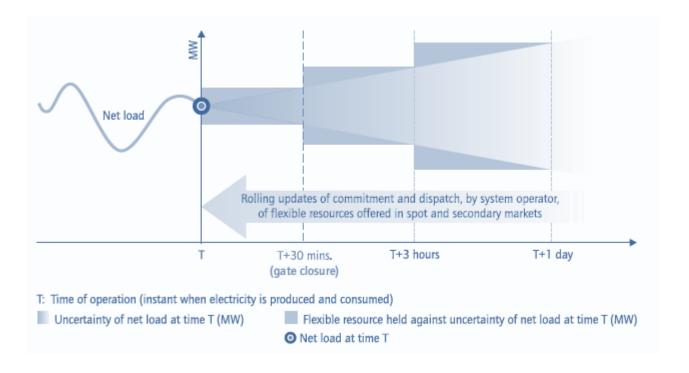
Source: Agora Energiewende 2012



Improved weather forecasting

- Weather forecasting systems have improved dramatically
 - Remaining problem: cloud casting

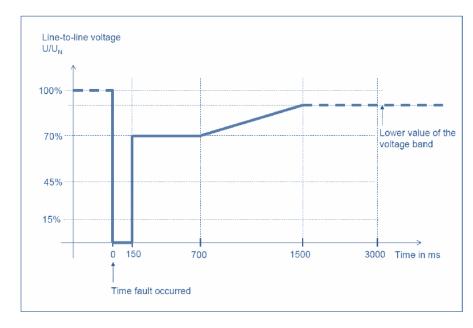
Source: https://www.renewableenergyworld.com



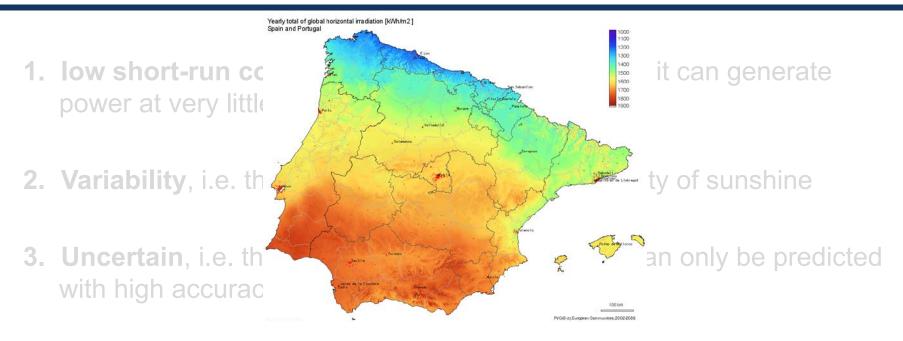
PV friendly market design

 Gate-closure times in wholesale marked were move closer to the time of operation (15 minute before operation on intraday market).

Source: IEA 2011



PV (inverters) can help to stablize the grid


- Grid Codes require PV to supply reactive power and support voltage dips (voltage ride-through capabilities)
- Allowing PV producers to participate in ancillary services markets (design might need to be modified: minimum bid size, time periods, etc.)

Source: Aryanezhad, M., et al. (2013).

4. Locational variations, i.e. solar resources vary from one place to the next = grid expansion required

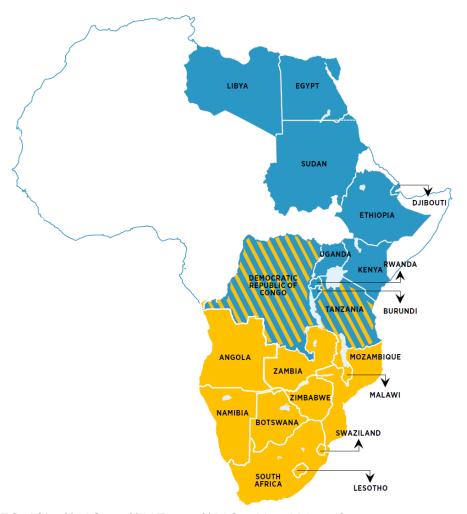
The expansion of the EU transmission grid

- Anticipate the future: 10-year network development plan from ENTSO-e
- Increasing interconnections:
 10% by 2020; 15% by 2030
- Reducing bottlenecks: The latest report pinpoints about 100 spots
- Linking markets: Full market coupling with European neigbours (e.g. one merit order for Germany and Austria).

Source: ENTSO-e 2014

IRENA's Africa Clean Energy Corridor

African corridor countries


Eastern Africa Power Pool (EAPP)

Southern African Power Pool (SAPP)

The term "country" as used in this material also refers, as appropriate, to territories or areas

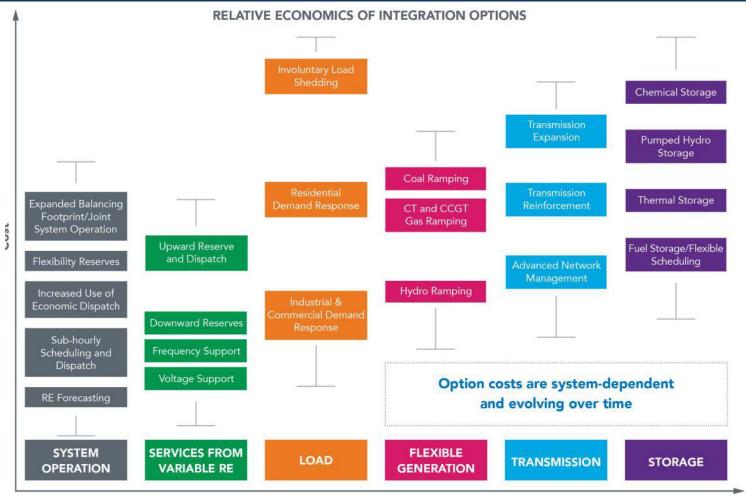
 $Source: http://www.irena.org/DocumentDownloads/Publications/ACEC_A frica \% 20 Clean \% 20 Energy \% 20 Corridor_2015.pdf$

System Integration of Solar PV:

Options for Making the Power System more Flexible

Flexibility options for integrating high shares of wind and PV

- 1. Flexibility through grid expansion/interconnections
- 2. Flexibility from conventional power plants
- 3. Flexibility from dispatchable RE technologies


- 4. Curtailment of RE
- 5. Flexible demand
- 6. Flexibility through storage

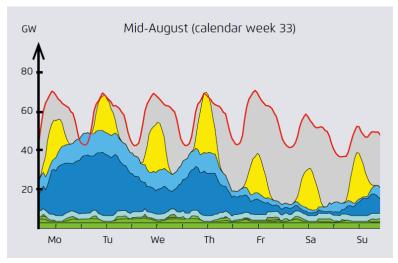
Cost of Different RE Integration Options

Type of Intervention

Source: http://iea-retd.org/wp-content/uploads/2016/03/IEA-RETD RE-TRANSITION.pdf

Flexibility options for integrating high shares of wind and PV

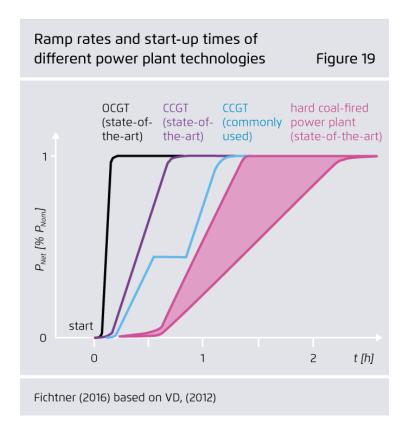
Additional measures to optimally integrate rapidly increasing share of solar PV:



Conventional power plant need to become more flexible

- Base load power plants will disappear (fossil fuel power plants need to become more flexible)
- Reduce must-run requirements of conventional power plants
- Reduced full-load hours for coal and gas-fired power plants
- changing economics and additional revenue requirements via capacity markets?
 - Re-negotiate offtake agreements?

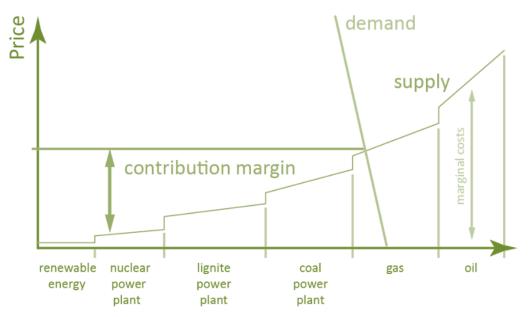
Source: Agora 2013



Conventional power plant need to become more flexible

- Increased ramping requirements and new ramping products
- Upgrade existing power plant in order to allow for better ramping capabilities (coal?, nuclear?)

<u>Source: https://www.agora-energiewende.de/en/publications/a-word-on-flexibility/</u>



Moving from long-term PPAs to economic dispatch

- Inflexibility in many power markets stems from longterm contracts for gas- or coal-fired power producers
- Economic Dispatch: Power plants are dispatched according to their short-term marginal costs (fuel costs and CO2 costs)
- Wind and solar are only dispatched at times of negative prices on the spot market

Amount of electricity

Flexibility from dispatchable renewables

- Increased ramping requirements (e.g. hydro)
- Modified finance mechanism for dispatchable renewables (biomass):
- Reasoning: reduce operating hours of biogas plants and use them as back-up for wind and solar PV (biogas plus storage)

<u>Source:</u> https://www.suezwaterhandbook.com/degremont-R-technologies/sludge-treatment/digestion/digestion-with-integrated-biogas-storage-Digelis-Smart

Adopting new curtailment rules

- Curtainling RE producers in times of grid congestions
- Remote-controlled power plants
- Curtailing maximum output of RE producers (70% of PV nameplate capacity in Germany)
- (Full) compensation of RE producers?

Adopting new curtailment rules

Option 1:	Option 2:
Fixed curtailment of peak PV output	Remote controlled operation via system operator
 cap the maximum output of PV systems at a certain percentage of the nameplate peak capacity 	Remote control via ripple control receivers
 In Germany, PV output of such systems is capped at 70% 	 can send signals to reduce the amount of electricity fed into the grid in 10% increments
 This regulation reduces the annual cumulative power generation of a PV system by about 1% 	Sunny Central Feeddin management as per § 6 EEG 2009. Grid operator Public grid Sunny WebBox Sunny WebBox
	Sunny Portol Internet Router RS485 Sunny Mini Centrol RS485 Sunny TriPower Response signal of the actual feed-in power as per § 6 EEG 2009

Demand response – Examples of flexible load

Lower hanging fruits: Flexibility of industrial consumers
 INCENTIVE MECHANISMS FOR FLEXIBLE LOADS ON DAY-AHEAD AND INTRADAY MARKETS

Туре	Incentives via
Load shifting	Regular price spreads (e.g. > EUR 50/MWh)
Load shedding	Occasional, very high prices (e.g. > EUR 1,000/MWh)
Load increase	Regular low prices (e.g. < EUR 10/MWh)

Source: IASS Potsdam on the basis of Gobmaier and von Roon 2010

Storage technologies can facilitate RE integration in various ways

- 1. Load shifting
- 2. Frequency response
- 3. Reduce grid congestions
- 4. Reduce RE curtailment
- 5. Ramping

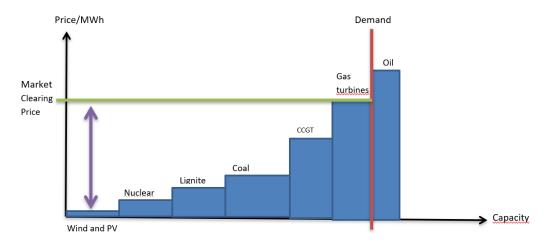
Check out Session 30 (PV and Storage)

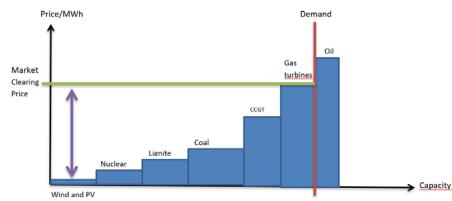
Source: IEA-RETD RE-STORAGE 2015

Summary

Summary of Key Findings

- The deployment of solar PV triggers important benefits for the electricity system
- Increasing shares of solar PV increase the need for flexible power systems
- There are numerous flexibility options, including grid expansion, flexible (dispatchable) power plants, flexibility from wind and PV, demand response and storage.
- Each region/countries needs to analyze and compare the costs of various flexibility options


Outlook:


Solar PV and the Merit Order Effect (Session 28).

Solar PV and the Merit Order Effect

Solar PV reduces the wholesale market price

Further Reading/List of References

List of References and Further Reading

- IEA (2014). The power of transformation Wind, sun and the economics of flexible power systems, IEA, Paris.
 https://www.iea.org/publications/freepublications/publication/The power of Transformation.pdf
- Pescia, D., et al. (2015). Understanding the Energiewende. FAQ on the ongoing transition of the German power system. Berlin, Agora Energiewende. https://www.agora-energiewende.de/fileadmin2/Projekte/2015/Understanding the EW/Agora Understanding the Energiewende.pdf
- IEA-RETD. (2015). Integration of Variable Renewables Volume I: Main Report. http://iea-retd.org/wp-content/uploads/2015/01/Report-Volume-I-Main-Report.pdf
- IEA-RETD. (2015). Integration of Variable Renewables Volume II: Case Studies. http://iea-retd.org/wp-content/uploads/2015/01/Report-Volume-II-Case-studies.pdf
- Agora (2012). Erneuerbare Energien und Stromnachfrage im Jahr 2022. Berlin, Agora Energiewende.

List of References and Further Reading

- Dragoon, K. and G. Papaefthymiou (2015). Power System Flexibility Strategic Roadmap -Preparing power systems to supply reliable power from variable energy resources Berlin Ecofys
- IRENA. (2015). The Age of Renewable Power: Designing national roadmaps for a successful transformation.
 http://www.irena.org/menu/index.aspx?mnu=Subcat&PriMenuID=36&CatID=141&SubcatID=642
- Miller, M., E. Martinot, et al. (2015). Status Report on Power System Transformation: A 21st Century Power Partnership Report. NREL Technical Report NREL/TP-6A20-63366. http://www.nrel.gov/docs/fy15osti/63366.pdf
- IEA. (2014). The Power of Transformation: Wind, Sun and the Economics of Flexible Power Systems. International Energy Agency. http://www.iea.org/bookshop/465-
 The Power of Transformation.
- Cochran, J., Miller, M., et al. (2014). Flexibility in 21st Century Power Systems. 21st Century Power Partnership. NREL Report TP-6A20-61721. http://www.nrel.gov/docs/fy14osti/61721.pdf

Thank you for your time!

ASSISTING COUNTRIES WITH CLEAN ENERGY POLICY

6. Knowledge Checkpoint: Multiple Choice Questions

