

Accelerating the Adoption of Energy-Efficient Lighting, Appliances and Equipment:

An Introduction to Proven Technology and Policy Solutions

Webinar

25 July 2017

Economic, Social and Environmental Benefits

Products That Use >50% of Global Electricity

Sources: International Energy Agency; Lawrence Berkeley National Laboratory; UN Environment Method: Approximate savings in 2030 in emerging & developing economies if today's best available technologies are adopted *Electric motors systems use over half of global electricity, some of which is accounted for in ACs and Refrigerators

The Integrated Policy Approach Transforms Markets

U4E Project Partners - Working Together

Supporting Policymakers

Level 2

Regional Market Assessment

Regional Policy Roadmap

Regional Harmonisation

Regional Training for Policymaker; Practitioner

Level 3

National Action Plan

Help develop funding proposal

Technical assistance with implementation

U4E Savings Assessments for 150 Countries

Nigeria

Energy efficiency benefits from lighting, residential refrigerators, room air conditioners, power and distribution transformers and industrial electric motors with the implementation of globally benchmarked minimum energy performance standards.

ANNUAL SAVINGS IN 2030 Reduce electricity use by over 8 TWh → 11.5% of future national electricity use Save electricity worth 500 Million USD ààà عللك عللك عللك عللك equivalent to 19 Power Plants [100MW] Reduce CO₂ emissions by 4 Million Tonnes CO, @ @ @ @ equivalent to 2 Million Passenger Cars

EVEN GREATER SAVINGS POSSIBLE WITH BEST AVAILABLE TECHNOLOGY

7

U4E Regional Collaboration

U4E National Projects

Find Out More

Save the Date: U4E Event at COP23 in Bonn - November 15, 2017

- Review progress on efficient lighting, appliances and equipment around the world
- Announce new opportunities and key developments
- Network with senior officials, top business executives and civil society leaders
- Free to attend, registration opening soon (space is limited)
- Notify <u>U4E@unenvironment.org</u> to be added to email list for future updates

U4E Website: www.united4efficiency.org

YouTube: <u>https://youtu.be/R_CyITZ6HFk</u>

Energy-Efficient Lighting Policy Guide

Indoor and Outdoor Lighting

Background

- Inefficient, short-lived products are still common
- Rapid evolution in technology and prices in past 15 years
- Energy and environmental impact
 - Consume **15%** of global electricity
 - Quality products can cut power use up to 90%
- Great product for governments to start with when transforming their markets with efficient products

Scope of the Policy Guide

	Incandescent and Halogen	Fluorescent: CFL and LFL	High Intensity Discharge: MV, HPS, MH	LED lamp and luminaire
Efficacy	8 - 21 lm/watt	50 - 110 lm/watt	45 - 100 lm/watt	60 - 150 lm/watt
Lifetime	1,000 - 3,000 hrs	6,000 - 30,000 hrs	10,000 - 24,000 hrs	15,000 – 60,000 hrs
Colour Temp.	2,600 - 3,200 K	2,500 - 6,500 K	2,000 – 5,700 K	2,700 – 6,500 K
Colour Rendering	100	70 - 95	15 - 85	70 - 95
Dimmable	Yes	If dimmable ballast	If dimmable ballast	If dimmable driver

Why Leapfrog to Energy-Efficient Lighting

- The amount of lighting used globally is projected to rise by **50 per cent** compared to today
- A transition to energy-efficient lighting will save countries **40 60 per cent** in 2030
- LED lighting offer many benefits to CFL such as better quality such as turning instantly to full brightness, content not mercury and are not as fragile
- Prices of energy-efficient LEDs have greatly **DROPPED** in recent years

Comparison of Efficiency Requirements in Europe and US

For reference: the US 2020 standard will be 45 lumens per watt at US voltage (110-130V). The graph reflects the conversion to high voltage (230V).

Sample Recommendations for Policymakers

Standards

✓ Adopt internationally-recognized test standards

Supporting Policies

 Ensure information on light output, efficacy, color rendering, color temperature, mercury content, and dimmability are on the label

Monitoring, Verification and Enforcement

- Include legal authority, enforcement powers and penalties in the national legal framework
- ✓ Use a product registration system as an initial compliance gateway

Financial Mechanisms

 Consider a blend of financing mechanisms to help offset the incremental cost of energy-efficient lighting

Environmentally Sound Management and Health

 Recover materials in mercury added lamps (e.g. glass, ferrous and nonferrous metals and phosphors)

Climate-Friendly and Energy-Efficient Refrigerators Policy Guide

Household Refrigerators

Background

- Most popular household appliance (typically refrigerator-freezer model)
- Stock in developing / emerging economies doubles to almost 2 billion by 2030
- Energy and environmental impact
 - > 10% of household energy consumption
 - Outdated units use 3X more electricity (>700 kWh/year) vs. best ones (< 250 kWh / year)</p>
 - Some refrigerants have GWP well over 1000X more potent than CO2
 - Some refrigerants damage the ozone layer

Scope of the Policy Guide

Household Refrigeration

REFRIGERATORS

(one or more chilled compartments, generally at various temperature zones between 0°C and 14°C, and which may include an ice-making section)

FREEZERS

(one or more frozen compartments, usually between -18°C and -6°C)

FRIDGE-FREEZERS

(combination of both chilled and frozen compartment(s) in the same appliance)

Global Sales by Volume

Source: GfK 2008

Refrigerator Improvements

INSULATION

The most important energy-saving technology is improved insulation. 60 per cent of the heat leakage into a refrigerator comes in through the walls and door⁷

COMPRESSORS

Compressors with much improved efficiency compared with those of ten years ago are available globally, with little cost impact

CONTROLS

Improved controls, especially for appliances with two or more compartments and for variable speed drive (invertor) controls for compressors

Why Leapfrog to energy-efficient and climate-friendly refrigerators?

Aggregate impacts in 150 developing countries and emerging economies in 2030:

Financial Savings: \$14 billion = Google's profits in 2015.

Sample Recommendations for Policymakers

Standards

- ✓ Adopt MEPS with relevant test method IEC 62552
- ✓ Ensure the refrigerant and foam-blowing agent have zero ozone depletion potential and global warming potential that is as low as practicable (GWP of 20 or less)

Supporting Policies

✓ Adopt labeling requirements to convey financial, energy and climate impacts

Monitoring, Verification and Enforcement

✓ Ensure compliance with energy, refrigerant and foam blowing agent requirements

Financial Mechanisms

 Consider a blend of financing mechanisms to help offset the initial incremental cost (higher purchase price) of energy-efficient and climate-friendly refrigerators

Environmentally Sound Management and Health

- ✓ Develop a legal framework for sound end-of-life disposal and recycling
- ✓ Ensure compliance with ISO 5149

Climate-Friendly and Energy-Efficient Air Conditioners Policy Guide

Room Air Conditioners Policy Guide

Background

- Global stock increasing from 660 million units in 2015 to 1.5+ billion by 2030
- Huge impact on energy and the environment
 - > 20% of household energy use in warm climates
 - Global-warming potential of many refrigerants is over 1000X more potent than CO₂
 - Some old refrigerants damage the ozone layer

Accelerating the Global Adoption of ENERGY-EFFICIENT AND CLIMATE-FRIENDLY AIR CONDITIONERS

UN Environment - Clobal Environment Racility | United for Efficiency (URE)

USE POLICY CUDE SERVE

Scope of the Policy Guide

Window

Portable

Inverter Split

Non-Inverter Split

Multi-Split

Save Energy and Reduce Emissions

Sample National Standards to Transform Markets

Technology Solutions to Improve Performance

Why Leapfrog to energy-efficient, climate-friendly AC?

Financial Savings: Life-Cycle Cost of 1.5 tonne split system AC in India

PURCHASE COST ELECTRICITY COST

Sample Recommendations for Policymakers

Standards

- ✓ EER is a starting point if no metric has been in use, but SEER is preferable.
- ✓ Ensure that the refrigerant has zero ozone depletion potential and global warming potential that is as low as practicable.

Supporting Policies

✓ Include information on EER or SEER rating, and the refrigerant.

Monitoring, Verification and Enforcement

- ✓ Use a product registration system as an initial compliance gateway.
- ✓ Adopt ISO 16358 for testing cooling capacity and performance.

Financial Mechanisms

 ✓ Consider a blend of financing mechanisms to help offset the initial incremental cost (higher purchase price) of energy-efficient and climate-friendly air conditioners

Environmentally Sound Management and Health

- ✓ Collect and process the steel, copper, aluminum, plastics and the refrigerant.
- ✓ Ensure compliance with ISO 5149 and IEC 60335-2-40

Energy-Efficient Electric Motors and Motor Systems Policy Guide

Electric Motors and Motor Systems

Background

- Motors are everywhere, keeping modern life in motion
 - People Materials Liquids Gasses
- Huge impact on energy and environment
 - Population & economic growth drive demand
 - > 20-30% energy efficiency improvements possible

YOU DRINK.

Focus of the Policy Guide

- General purpose Induction Motors
 - > 3-phase AC
 - ➤ ≤1000 Volts at 50 Hz or 60 Hz
 - > 2, 4 or 6 poles
 - Output 0.75 kW 375 kW
 - Continuous operation

10% of motor stock / 68% of energy use by motors

Systems driven by these motors

Motor Improvements

Larger conductive bars and endrings or conductors of lower resistivity (Copper instead of Aluminium) reduce rotor resistance

Reduced friction bearings

More copper wire of larger diameter in the stator saves energy by reducing the resistance of the stator winding

Modified stator slot design helps to decrease magnetic losses and makes room for larger diameter wire

٠

Efficient cooling fan design improves airflow and reduces power required to drive the fan

Longer stator lowers magnetic density and increases cooling capacity. Premium grade magnetic steel reduces hysteresis losses; thinner laminations reduce eddy current losses.

IEC Efficiency Classes for Motors

Why Leapfrog to Energy-Efficient Motors?

- 41 countries (81% of global electricity use in motor systems) have steered their markets toward higher efficiency motors
- Significant risks of inaction
 - Motors can last 20+ years, locking-in electricity waste
 - Become destination for inferior motors not accepted elsewhere

Motor System Improvements

Sample Recommendations for Policymakers

Standards

- Domestic motor manufacturing: adopt MEPS at IE2 and timetable for graduating to IE3
- ✓ No domestic motor manufacturing: adopt MEPS at IE3

Supporting Policies

- ✓ IEC 60034-30-1 nameplates on all motors
- ✓ Professional repairs per ANSI/EASA AR100

(~ 3 315S/M-04		IP5	5 INS CL	F ∆1 80 K	S1	S	1.00	AMB 4	0°C
V	Hz	kW	RPM	A	PF	Eff	100%	75%	50%
380 ∧ / 660 Y	50	185	1485	332/191	0.88		96.3	96.3	95.9
400 A / 690 r			1490	318/184	0.87	157	06.5	7 30	95.8
415 A / -			1490	310/-	0.86	IE S	30.5	30.5	35.0
460 / -	60		1790	284/-	0.85		96.2	95.8	95.0
				<u></u>	2 NEMA E	ff 96.2%	250HP 46	0 V 60Hz	1790 RPM
🖶 - 6316-C3(34g)		Iut	V1 W1 U1 V1 W1 284 A PF0.85 Des A Code H SF1.15		CC029A				
MOBIL POLYREX EM		x II	12 13	×11 12 13	Alt 10	00 m.	a.s.l. 12	259 kg	

Monitoring, Verification and Enforcement

- ✓ Implement MVE in national legal framework in time for the adoption of MEPS
- ✓ Measure motor efficiency per IEC 60034-2-1

Financial Mechanisms

 Assess existing finance sources and conduct analysis to understand financial barriers so applicable delivery mechanisms can support voluntary actions

Environmentally Sound Management and Health

 Collect and process cast iron, steel, aluminium, copper, stainless steel and brass parts (98% of motor content) that are fully recyclable

Energy-Efficient Transformers Policy Guide

Transformers

38

Background

- Static devices that transfer electrical power between circuits
 - Losses proportional to current in wire: increase voltage & decrease current
- Huge impact on energy, environment
 - Operate non-stop
 - Lifetimes of 25 years or more
 - Lose nearly 5% of global electricity
 - Stock will nearly double by 2030

Focus of the Policy Guide

Main Power Transformers

Distribution Transformers

Group	Voltage	Phases	Insulation	Common Use
Large Power	>230 kV	Single & Three	Liquid-filled	Step up or down voltage for transmission over long distances; substation transformers
Medium Power	>36 kV & ≤230 kV	Single & Three	Liquid-filled or dry-type	Stepping voltages down from a sub- transmission system to a primary distribution system
Medium Voltage Distribution	≤36 kV	Single & Three	Liquid-filled or dry-type	Step down voltage in a distribution circuit from primary to secondary voltage
Low Voltage Distribution	≤1 kV	Single & Three	Dry-type	Step down voltage in a building distribution circuit or to supply power to equipment

Loss and Efficiency Relationship

Why Leapfrog to Energy-Efficient Transformers?

13 of the world's largest economies undergoing a market transformation

- Very attractive when considering the total cost of ownership
- Significant risks of inaction: lock-in decades of electricity waste
- Savings potential: **400 TWh** and **250 million tonnes** of CO₂ emissions in 2030

Countries (in red) lacking national mandatory efficiency policies for distribution transformers

Examples of MEPS

Source: SEAD Standards & Labelling Working Group Distribution Transformers Collaboration. Part 1: Comparison of Efficiency Programmes for Distribution Transformers. December 2013

Examples of MEPS

Sample Recommendations for Policymakers

Standards

✓ Aim to adopt MEPS with test method IEC 60076

Supporting Policies

- ✓ Labels
- ✓ Communication campaigns

Monitoring, Verification and Enforcement

✓ Implement MVE in national legal framework in time for the adoption of MEPS

Financial Mechanisms

 Encourage the adoption of purchasing practices that are based on the total cost of ownership over a transformer's lifetime, rather than on the first cost.

Environmentally Sound Management and Health

 ✓ Follow guidance from the Stockholm Convention on Persistent Organic Pollutants for locating, handling and disposing of PCB contaminated equipment.

Contact TRANSFORMING MARKETS TO ENERGY-EFFICIENT PRODUCTS

+33 1 44 37 19 86 U4E@unenvironment.org united4efficiency.org