ASSISTING COUNTRIES WITH CLEAN ENERGY POLICY

An Initiative of the Clean Energy Ministerial

International Solar Alliance Expert Training Course

Off-grid Demand Analysis

In partnership with the Clean Energy Solutions Center (CESC)

Dr Pol Arranz-Piera

September 2019

Supporters of this Expert Training Series

An Initiative of the Clean Energy Ministerial

Overview of Training Course Modules

AIGUASOI

This Training is part of Module 4, and focuses on the issue of Off-grid demand analysis

ttalecnoAmbiental

INTERNATIONAL SOLAR ALLIANCE

Expert Trainer: Dr Pol Arranz-Piera

AIGUA

Brief Profile:

- Projects Director and Senior Engineer at AIGUASOL, an international energy consulting, engineering and R&D firm
- Previous experience includes Trama Tecnoambiental (TTA) and URS Corp. (currently AECOM)
- 20+ years of experience in the renewable energy and energy efficiency sectors, covering nearly 40 countries in Europe, The Americas, Africa, the Middle East and Asia
- Associate researcher and lecturer at the Technical University of Catalonia (UPC) on electricity services planning, solar and biomass technologies.

Index

- Understanding demand: a critical factor for off-grid PV systems
- Basics: Energy demand, Power demand
- Types of loads (baseloads, daily cycle, deferrable...)
- AC and DC loads
- Types of demand (residential, community, productive) examples
- Levels of demand, Tiers (Multitier Framework)
- Data collection methods and techniques
- Projections, scenarios
- Demand side management
- In conclusion: Influence on PV system designs
- References

Introduction: Understanding demand

Electricity is crucial for any human activity

- From the most basic, domestic uses …
 Lighting, cooking, heating, transport
- to basic services (community/public)...
 □ Health, education, communications

AIGUAS

 and to any kind of productive, commercial activities

Especially for 100% solar mini-grids, where the electricity available will be shared among several users

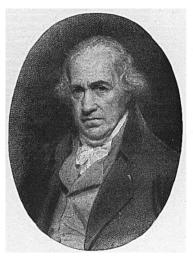
Risk of OVERSIZING (grid extension approach) or UNDERSIZING (not considering potential growth, even short term)

Can lead to:

- Bad quality of service (interruptions, losses...)
- Increased budget (e.g. very large batteries to guarantee a minimum supply in winter)

AIGUASC

Basics: Energy demand, Power demand


Power demand:

- Unit: Watt (W)
- In terms of classical mechanics:

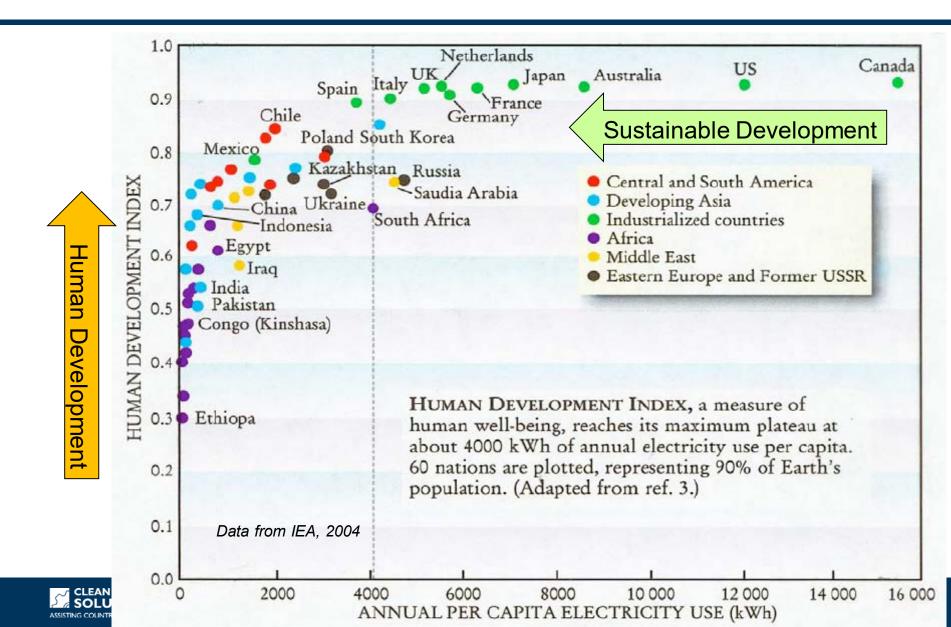
$$W = \frac{J}{s} = \frac{N \cdot m}{s} = \frac{kg \cdot m^2}{s^3}$$

• In terms of electromagnetism:

$$\mathbf{W} = \mathbf{V} \cdot \mathbf{A} = \mathbf{A}^2 \mathbf{\Omega} = rac{\mathbf{kg} \cdot \mathbf{m}^2}{\mathbf{s}^3}$$

James Watt (1736 - 1819)

Scottish inventor James Watt was a mechanical engineer who radically improved the steam engine.


□ Energy demand:

- Unit: Joule (J).
- But in electricity, the Watt-hour (Wh) is widely used, as it refers to the average power (W) supplied in one (1) hour
- Conversion: 1 kWh = 3, 6 MJ

HDI vs electricity consumption

Electrical energy consumption per capita

2016

in kWh/year						
Norway		23.000		Greece	5.001	
Canada			15.546	Italy	4.768	
Finland			14.654	Malta	4.652	
USA			12.984	Slovakia	4.652	
Sweden			12.793	United Kingdom	4.652	
Luxemb	ourg		10.932	Portugal	4.536	
Belgium		7.211		Bulgaria	4.071	
Austria		7.094		China	3.927	
France		6.629		Hungary	3.838	
Germany			6.280	Croatia	3.722	
Slovenia			6.280	Poland	3.489	
Netherl	ands	6.164		Lithuania	3.373	
Estonia			5.582	Latvia	3.256	
European Union (28)			5.466	Romania	2.210	
Denmark			5.464	India	806	
Spain	446 kWh/m	onth 5.356		Ghana	355	
Czech Republic			5.350	Nigeria	144	
Ireland			5.350	South Sudan	40	
Cyprus	Cyprus		5.117	Haiti	39	

AIGUASOL

Irama

alecnoAmbien

Electricity consumption per country

(key aspects: average users, climatic area, efficiency, access to electricity)

Source: Eurostat, IEA

CARBON

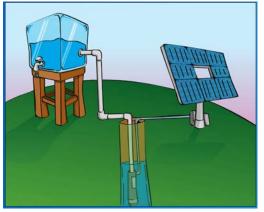
TRUST

INTERNATIONAL SOLAR ALLIANCE

CLEAN ENERGY SOLUTIONS CENTER ASSISTING COUNTRIES WITH CLEAN ENERGY POLICY

10

Types of loads – AC vs DC


AC loads:

- Residential/commercial: Lighting, TVs, Fans, Refrigerators, kitchens
- Productive: telecom towers, water pumps, grain mills, wood treatment

DC loads (mainly for off-grid applications):

- Residential/commercial: Lighting, TVs, Fans, Refrigerators
- Productive: poultry incubators, water pumps, grain mills
- ✓ Selection depends on distribution system
- Generally, AC appliances are still cheaper

Source: Efficiency for Access Coalition, 2018; GIZ, 2015

DC water pumping system

Types of loads – Classification

1. Lighting

2. Communications

Mobile phone Television Radio Most popular initial uses of electricity in most rural settings

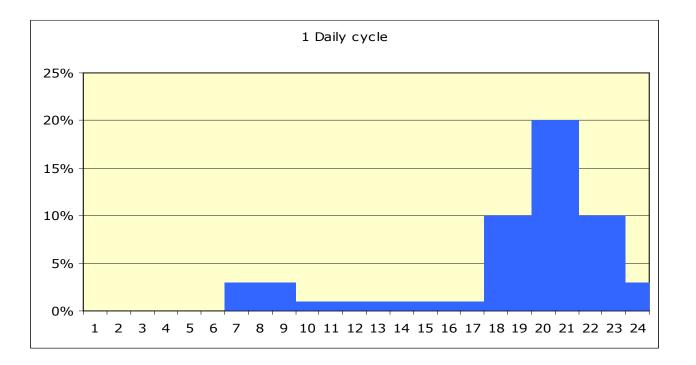
3. Motor-based applications

e.g. Refrigerators Mixers Water pumping Entertainment Industrial equipment

Socio economic development for the community Motor starting currents are significant

RNATIONA

4. Heat-generating appliances

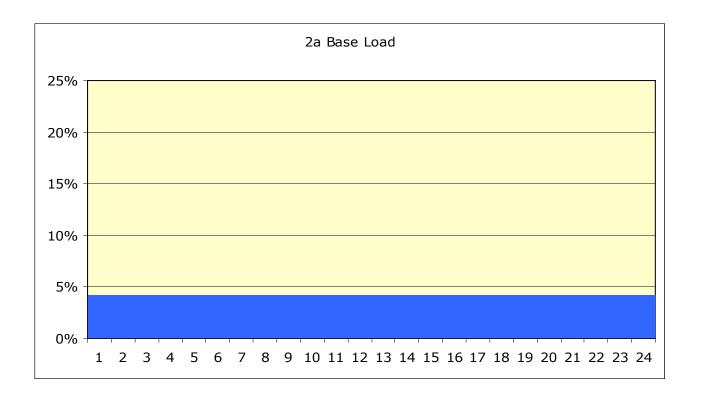

AIGUASC


Cookers Hair dryers

ENERGY

IES WITH CLEAN ENERGY POLICY

Several types within a Daily cycle



Base load

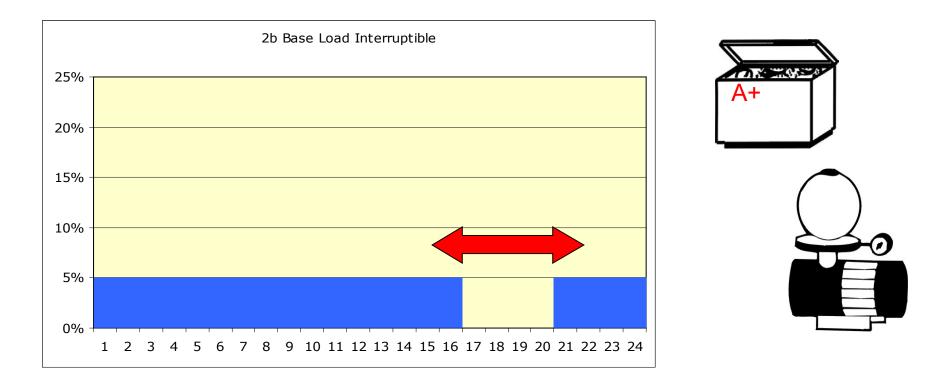
CLEAN ENERGY

ASSISTING COUNTRIES WITH CLEAN ENERGY POLICY

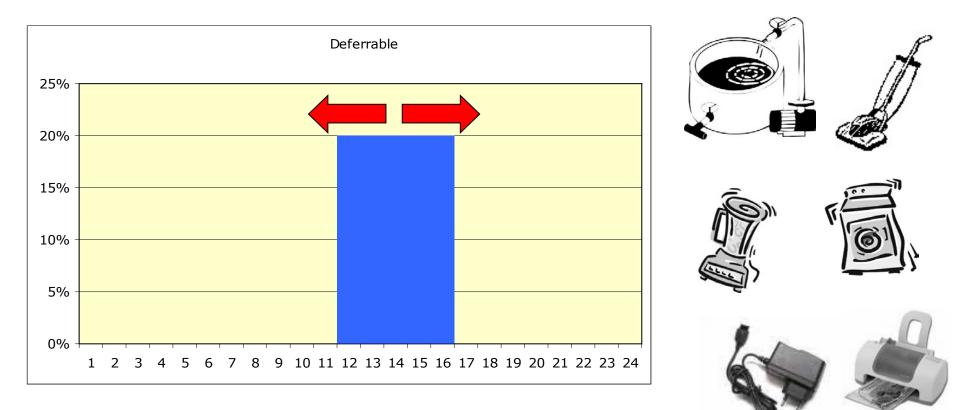
AIGUASOL

Trama

ttalecnoAmbiental

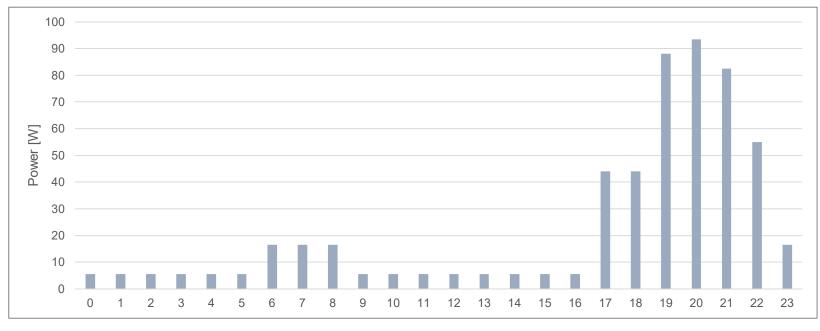


Base load interruptible


ENERGY

ES WITH CLEAN ENERGY POLICY

Deferrable



Types of demand - Residential

Typical residential load profile

Peak in the morning and evening/night hours

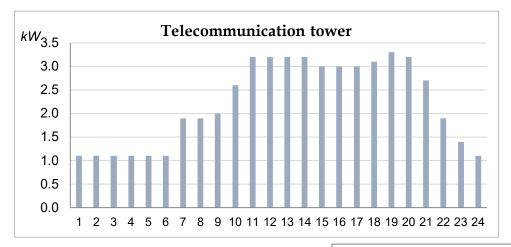
Source: TTA

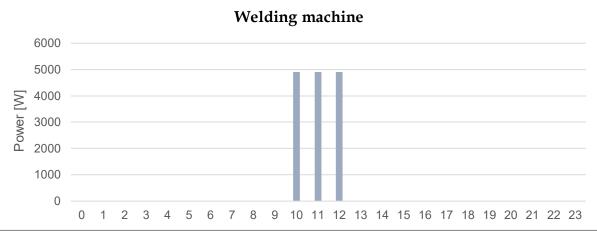
Types of demand - Commercial

Typical commercial load profiles

Category	Share of connected Shops	EDA (Wh/day)	Load profile
SH-basic	50%	550	800 5 600 5 400 200 0 2 4 6 8 10 12 14 16 18 20 22
SH- medium	40%	2,200	800 5 600 5 400 200 0 2 4 6 8 10 12 14 16 18 20 22
SH-high	10%	4,400	800 5 600 5 400 200 0 2 4 6 8 10 12 14 16 18 20 22

Source: TTA


AIGUASOL ttalecnoAmbientel


Types of demand - Productive

AIGUASO

Examples of productive load profiles

Irama

alecnoAmbien

INTERNATIONAL

TRUS

SOLAR

Levels of demand in rural communities

	Category	Demand level - reference		
1	Basic Domestic (lighting, communication)	up to 20 kWh/month - 500W (DC or AC) per household		
2	Medium domestic (1+ small low consumption fridge)	up to 50 kWh/month - 1000W (AC) per household		
3	Community (2+ community premises)	Medium domestic + school, health centre (50 kWh/month - 1000W) + public lighting (20kWh/month - 80W for each 200m2)		
4	3 + small productive uses	Above the previous values		

The Multi-Tier Framework (MTF)

Measuring energy access: the tiers Improving attributes of energy supply leads to higher tiers	Load level	Indicative electric appliances	Capacity tier typically needed to power the load
of access	Very low load (3–49 W)	Task lighting, phone charging, radio	Tier 1
	Low load (50–199 W)	Multipoint general lighting, television, computer printer fan	Tier 2
	Medium load (200–799 W)	Air cooler, refrigerator, freezer, food processor, water pump, rice cooker	Tier 3
	High load (800–1,999 W)	Washing machine, iron, hair dryer, toaster, microwave	Tier 4
Tier 0 Tier 1 Tier 2 Tier 3 Tier 4 4 hrs 4 hrs 8 hrs 16 hrs 23 hrs	Very high load (2,000 W or more)	Air conditioner, space heater, vacuum cleaner, water heater, electric cookstove	Tier 5

AIGUASOL

tta Irama Itta Iecno Ambiental

Source: The World Bank, 2015

Demand: a critical factor for off-grid PV systems

Mitigation strategies:

1. ASSESS THE ENERGY DEMAND THROUGH SURVEYS and QUESTIONNAIRES

AIGUASC

- The users are not experts
- Define users' demand requirements
- Consider socio-economic data

ENERGY EFFICIENCY: MANDATORY IN ALL PROJECTS

ramo

Pefil consumo para uso doméstico, servicios, pequeña industria (<200 kWh/mes) 20% del total 15% % usuarios 10% 5% 0% 81'S 108⁵, స్తు ം 1 , po Rangos de consumo mensual (kWh)

TERNATIONA

OLAR

2. COMPARATIVE DEMAND CHARACTERISATION

categories Assessment of load based on data analysis of similar villages

Data collection methods and techniques

1. Surveys and questionnaires

Objectives:

- To obtain the necessary data for the power plant design
- To influence on the consumption rationalization

Problem:

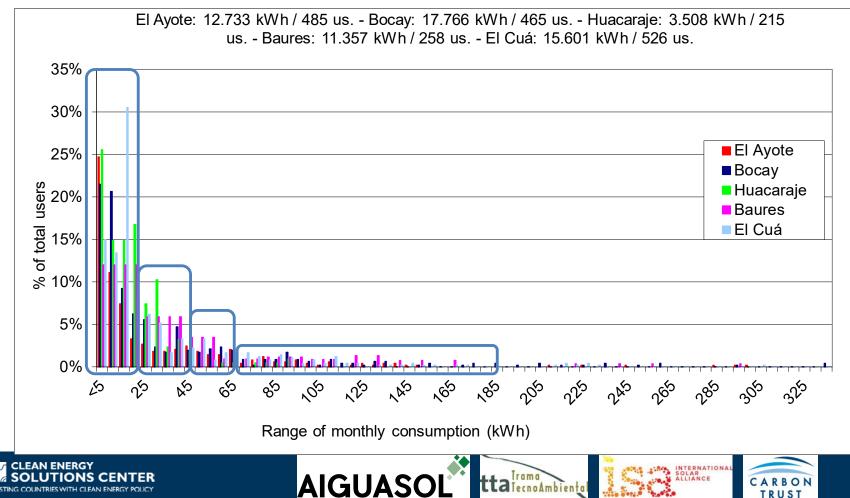
- The users are not experts
- The current and future demand estimation is a critical factor for the design

Methodology:

- To guide the users through their potential demand requirements
- To consider socio-economic data

Online tools:

https://d-lab.mit.edu/research/energy/energy-needs-assessment-toolkit https://energypedia.info/wiki/Catalogue_of_Mini-Grid_Tools http://www.minigridbuilder.com/



Data collection methods and techniques

2. Comparative demand characterisation

Assessment of load categories based on histogram of similar villages

Data collection methods and techniques

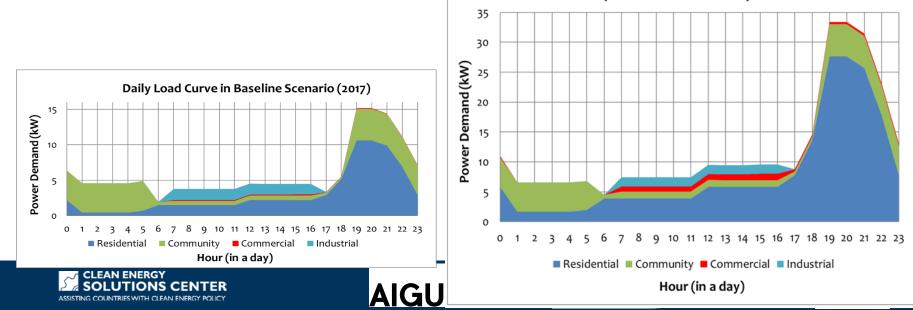
Demand survey results

Туре	Cat. 1	EDA (Wh/day)	Share	Cat. 2	EDA (Wh/day)	Share	Cat. 3	EDA (Wh/day)	Share
Households (HH)	HH-basic	275	25%	HH-medium	550	60%	HH-high	1,650	15%
Commercial (CO)	CO-basic	550	50%	CO-medium	1,650	38%	CO-high	3,850	13%
Welding machines (WM)	WM-basic	14,850	100%						
Places of worship (PW)	PW-mosque	550	50%	PW-church	1,650	50%			
Education centres (EC)	EC-basic	550	33%	60.000					
Health facilities (HF)	HF-basic	550	50%	50.000 — ∑ ^{40.000} —					
Community buildings (CB)	CB-basic	550	100%	a 30.000					
Telecom towers (TT)	TT-basic	5,500	100%	10.000					111;
Grain mills (GM)	GM-basic	2,200	50%	0:00	5:00 4:00 3:00 2:00	9:00 7:00	14:00 13:00 12:00 11:00	19:00 18:00 17:00 16:00 15:00	23:00 22:00 21:00 20:00
Fish conservation (FC)	FC-basic	3,300	33%	33% ■ HH-basic (90) ■ HH-medium (216) ■ HH-high		5 8 8 8 8 ■ HH-high (54) ■ PW-church (1	CO-basi	c (22)	
		Source: TT	Ā	EC-high (1)	GM-ba	asic (1)	GM-medium (,	()

AIGUASOI

Trama

ttalecnoAmbiental


SOLAR

Projections, Scenarios

Community		Electricity	Power peak (kW)			
Community	Baseline	Scenario 1	Scenario 2	Baseline	Scenario 1	Scenario 2
Seneso	4385	6300	9340	15.1	23.5	33.5
Boniafo	3443	5595	8126	12.7	22.5	29.7
Bompa	5422	9602	12972	21.2	40.4	53.4
Jaman Nkwanta	5174	8822	11683	18.9	35.8	47.3
Nakpaye	2938	4076	6147	8.4	13.5	18.1

Daily Load Curve in Scenario 2 (2027) Population growth + increased expenditure + increased productive activities

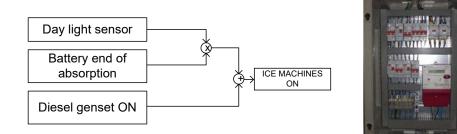
26

Definition

 Is the modification of consumers' energy demand, actively or automatically, in order to achieve a specific service supply goal

Example of goal

- Shift demand during sunshine hours
- Shave peaks of loads
- Consume when energy is cheaper


Methods

- Price incentives
- Automatic disconnection
- Energy efficiency

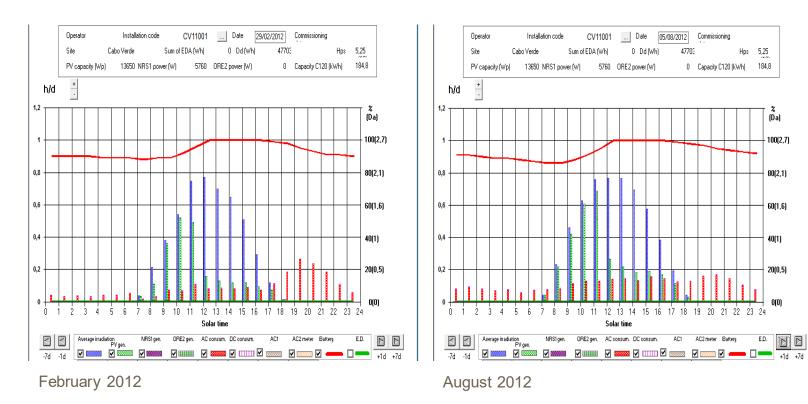
AIGUASOL ttalecnoAmbientel

Example: Monte Trigo mini-grid, Cape Verde

Deferrable loads

Periodically deferrable load: Ice-making machine

On when excess energy is available



Example: Monte Trigo mini-grid, Cape Verde

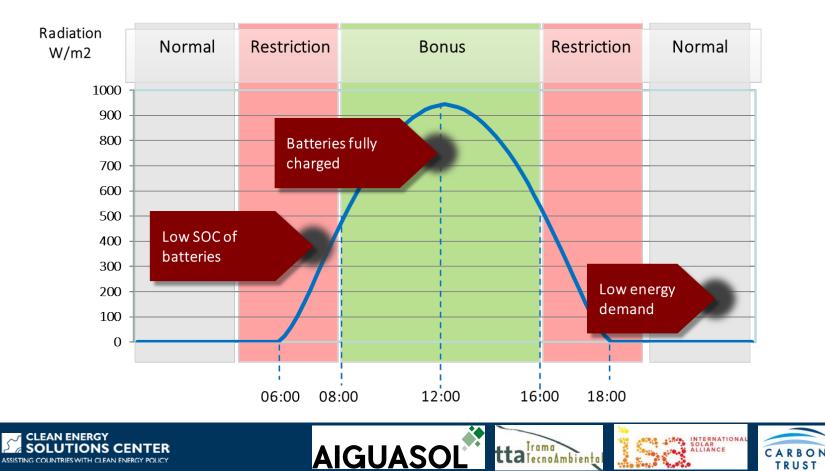
Load shifting

AIGUASOL

Irama

ttalecnoAmbiental

CARBON


TRUST

INTERNATIONAL

SOLAR

Automatic, linked to battery SOC

Incentives to shift demand and follow energy generation pattern

In conclusion: Influence on PV system design

Load profile (daily/night)	Battery sizingAC, DC, AC/DC-coupling
Type of loads (currents, single/3 phases)	Inverter type
Type of customers (residential, productive)	 Evolution of productive uses can require expansion of the PV generator
Demand evolution	 If uncertain, modular systems might be preferred
Grid arrival	Require grid compatible invertersAppropriate meters

AIGUASOL

tta^{Irama} IecnoAmbiental

- Efficiency for Access, 2018. Appliance data trends. Insights on Energy Efficiency, Quality, and Pricing for Off-Grid Appropriate TVs, Fans, and Refrigerators
- GIZ, 2016. Photovoltaics for Productive Use Applications. A Catalogue of DC-Appliances
- ESMAP, 2015. Beyond Connections: Energy Access Redefined
- Pol Arranz-Piera, Francis Kemausuor, Lawrence Darkwah, Ishmael Edjekumhene, Joan Cortés, Enrique Velo, Mini-grid electricity service based on local agricultural residues: Feasibility study in rural Ghana, Energy, Volume 153, 2018, Pages 443-454.

Thanks for your attention!

